These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 39074633)

  • 1. Reconstituted Cell-free Translation Systems for Exploring Protein Folding and Aggregation.
    Taguchi H; Niwa T
    J Mol Biol; 2024 Oct; 436(19):168726. PubMed ID: 39074633
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of chaperone coordination during cotranslational protein folding in bacteria.
    Roeselová A; Maslen SL; Shivakumaraswamy S; Pellowe GA; Howell S; Joshi D; Redmond J; Kjær S; Skehel JM; Balchin D
    Mol Cell; 2024 Jul; 84(13):2455-2471.e8. PubMed ID: 38908370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo translation rates can substantially delay the cotranslational folding of the Escherichia coli cytosolic proteome.
    Ciryam P; Morimoto RI; Vendruscolo M; Dobson CM; O'Brien EP
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):E132-40. PubMed ID: 23256155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ribosome can prevent aggregation of partially folded protein intermediates: studies using the Escherichia coli ribosome.
    Pathak BK; Mondal S; Ghosh AN; Barat C
    PLoS One; 2014; 9(5):e96425. PubMed ID: 24805251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cotranslational folding of human growth hormone in vitro and in Escherichia coli.
    Mermans D; Nicolaus F; Baygin A; von Heijne G
    FEBS Lett; 2023 May; 597(10):1355-1362. PubMed ID: 36520514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. L23 protein functions as a chaperone docking site on the ribosome.
    Kramer G; Rauch T; Rist W; Vorderwülbecke S; Patzelt H; Schulze-Specking A; Ban N; Deuerling E; Bukau B
    Nature; 2002 Sep; 419(6903):171-4. PubMed ID: 12226666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reshaping of the conformational search of a protein by the chaperone trigger factor.
    Mashaghi A; Kramer G; Bechtluft P; Zachmann-Brand B; Driessen AJ; Bukau B; Tans SJ
    Nature; 2013 Aug; 500(7460):98-101. PubMed ID: 23831649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system.
    Ying BW; Taguchi H; Ueda H; Ueda T
    Biochem Biophys Res Commun; 2004 Aug; 320(4):1359-64. PubMed ID: 15303282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional dissection of trigger factor and DnaK: interactions with nascent polypeptides and thermally denatured proteins.
    Schaffitzel E; Rüdiger S; Bukau B; Deuerling E
    Biol Chem; 2001 Aug; 382(8):1235-43. PubMed ID: 11592405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effective cotranslational folding of firefly luciferase without chaperones of the Hsp70 family.
    Svetlov MS; Kommer A; Kolb VA; Spirin AS
    Protein Sci; 2006 Feb; 15(2):242-7. PubMed ID: 16385000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global analysis of chaperone effects using a reconstituted cell-free translation system.
    Niwa T; Kanamori T; Ueda T; Taguchi H
    Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8937-42. PubMed ID: 22615364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How Does the Ribosome Fold the Proteome?
    Cassaignau AME; Cabrita LD; Christodoulou J
    Annu Rev Biochem; 2020 Jun; 89():389-415. PubMed ID: 32569518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperones in concert: Orchestrating co-translational protein folding in the cell.
    Schiffrin B; Calabrese AN
    Mol Cell; 2024 Jul; 84(13):2403-2404. PubMed ID: 38996455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed.
    Agashe VR; Guha S; Chang HC; Genevaux P; Hayer-Hartl M; Stemp M; Georgopoulos C; Hartl FU; Barral JM
    Cell; 2004 Apr; 117(2):199-209. PubMed ID: 15084258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA chaperone activity of large ribosomal subunit proteins from Escherichia coli.
    Semrad K; Green R; Schroeder R
    RNA; 2004 Dec; 10(12):1855-60. PubMed ID: 15525706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conversion of a soluble protein into a potent chaperone in vivo.
    Kwon SB; Ryu K; Son A; Jeong H; Lim KH; Kim KH; Seong BL; Choi SI
    Sci Rep; 2019 Feb; 9(1):2735. PubMed ID: 30804538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trigger factor lacking the PPIase domain can enhance the folding of eukaryotic multi-domain proteins in Escherichia coli.
    Gupta R; Lakshmipathy SK; Chang HC; Etchells SA; Hartl FU
    FEBS Lett; 2010 Aug; 584(16):3620-4. PubMed ID: 20659464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Real-time observation of trigger factor function on translating ribosomes.
    Kaiser CM; Chang HC; Agashe VR; Lakshmipathy SK; Etchells SA; Hayer-Hartl M; Hartl FU; Barral JM
    Nature; 2006 Nov; 444(7118):455-60. PubMed ID: 17051157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folding while bound to chaperones.
    Horowitz S; Koldewey P; Stull F; Bardwell JC
    Curr Opin Struct Biol; 2018 Feb; 48():1-5. PubMed ID: 28734135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Principles of cotranslational ubiquitination and quality control at the ribosome.
    Duttler S; Pechmann S; Frydman J
    Mol Cell; 2013 May; 50(3):379-93. PubMed ID: 23583075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.