These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39075204)
1. Exploring the effects of molecular beam epitaxy growth characteristics on the temperature performance of state-of-the-art terahertz quantum cascade lasers. Lander Gower N; Levy S; Piperno S; Addamane SJ; Albo A Sci Rep; 2024 Jul; 14(1):17411. PubMed ID: 39075204 [TBL] [Abstract][Full Text] [Related]
2. Effects of background doping, interdiffusion and layer thickness fluctuation on the transport characteristics of THz quantum cascade lasers. Stanojević N; Demić A; Vuković N; Dean P; Ikonić Z; Indjin D; Radovanović J Sci Rep; 2024 Mar; 14(1):5641. PubMed ID: 38453978 [TBL] [Abstract][Full Text] [Related]
3. Analyzing the effect of doping concentration in split-well resonant-phonon terahertz quantum cascade lasers. Levy S; Gower NL; Piperno S; Addamane SJ; Reno JL; Albo A Opt Express; 2024 Mar; 32(7):12040-12053. PubMed ID: 38571038 [TBL] [Abstract][Full Text] [Related]
4. Silver-based surface plasmon waveguide for terahertz quantum cascade lasers. Han YJ; Li LH; Zhu J; Valavanis A; Freeman JR; Chen L; Rosamond M; Dean P; Davies AG; Linfield EH Opt Express; 2018 Feb; 26(4):3814-3827. PubMed ID: 29475360 [TBL] [Abstract][Full Text] [Related]
9. Predictions of resonant mode characteristics for terahertz quantum cascade lasers with distributed feedback utilizing machine learning. Tang P; Chi X; Chen B; Wu C Opt Express; 2021 May; 29(10):15309-15326. PubMed ID: 33985233 [TBL] [Abstract][Full Text] [Related]
10. Dominant Influence of Interface Roughness Scattering on the Performance of GaN Terahertz Quantum Cascade Lasers. Cheng J; Quach P; Wang D; Liu F; Liu S; Yang L; Liu H; Shen B; Tong Y; Wang X Nanoscale Res Lett; 2019 Jun; 14(1):206. PubMed ID: 31209591 [TBL] [Abstract][Full Text] [Related]
12. Anomalous Temperature Effect in Weakly Coupled Superlattices: Carrier Transport in a THz Quantum Cascade Laser. Giparakis M; Kainz MA; Ertl MC; Limbacher B; Jaidl M; Beiser M; Isceri S; Detz H; Schrenk W; Schwarz B; Strasser G; Bastard G; Unterrainer K; Andrews AM Phys Rev Lett; 2024 Jan; 132(4):046302. PubMed ID: 38335369 [TBL] [Abstract][Full Text] [Related]
13. Basic phase-locking, noise, and modulation properties of optically mutual-injected terahertz quantum cascade lasers. Li Y; Yang N; Xie Y; Chu W; Zhang W; Duan S; Wang J Opt Express; 2019 Feb; 27(3):3146-3160. PubMed ID: 30732340 [TBL] [Abstract][Full Text] [Related]
14. Leakages suppression by isolating the desired quantum levels for high-temperature terahertz quantum cascade lasers. Wang L; Lin TT; Chen M; Wang K; Hirayama H Sci Rep; 2021 Dec; 11(1):23634. PubMed ID: 34880270 [TBL] [Abstract][Full Text] [Related]
15. Ultrafast Pulse Generation from Quantum Cascade Lasers. Wang F; Qi X; Chen Z; Razeghi M; Dhillon S Micromachines (Basel); 2022 Nov; 13(12):. PubMed ID: 36557362 [TBL] [Abstract][Full Text] [Related]
16. Impact of interface roughness distributions on the operation of quantum cascade lasers. Franckié M; Winge DO; Wolf J; Liverini V; Dupont E; Trinité V; Faist J; Wacker A Opt Express; 2015 Feb; 23(4):5201-12. PubMed ID: 25836553 [TBL] [Abstract][Full Text] [Related]
19. Quantum cascade lasers: from tool to product. Razeghi M; Lu QY; Bandyopadhyay N; Zhou W; Heydari D; Bai Y; Slivken S Opt Express; 2015 Apr; 23(7):8462-75. PubMed ID: 25968685 [TBL] [Abstract][Full Text] [Related]
20. Terahertz quantum cascade lasers based on resonant phonon scattering for depopulation. Hu Q; Williams BS; Kumar S; Callebaut H; Reno JL Philos Trans A Math Phys Eng Sci; 2004 Feb; 362(1815):233-47; discussion 247-9. PubMed ID: 15306517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]