BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 3907751)

  • 21. Trigeminal projections to supratentorial pial and dural blood vessels in cats demonstrated by horseradish peroxidase histochemistry.
    Mayberg MR; Zervas NT; Moskowitz MA
    J Comp Neurol; 1984 Feb; 223(1):46-56. PubMed ID: 6200513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide synthase-immunoreactive nerve fibers in dog cerebral and peripheral arteries.
    Yoshida K; Okamura T; Kimura H; Bredt DS; Snyder SH; Toda N
    Brain Res; 1993 Nov; 629(1):67-72. PubMed ID: 7506984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 5-Hydroxytryptamine-containing fibers in cerebral arteries of the cat, rat and guinea pig.
    Yu JG; Lee TJ
    Blood Vessels; 1989; 26(1):33-43. PubMed ID: 2653470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Overall distribution of substance P-containing nerves in the wall of the cerebral arteries of the guinea pig and its origins.
    Yamamoto K; Matsuyama T; Shiosaka S; Inagaki S; Senba E; Shimizu Y; Ishimoto I; Hayakawa T; Matsumoto M; Tohyama M
    J Comp Neurol; 1983 Apr; 215(4):421-6. PubMed ID: 6190847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chronic trigeminal ganglionectomy or topical capsaicin application to pial vessels attenuates postocclusive cortical hyperemia but does not influence postischemic hypoperfusion.
    Macfarlane R; Tasdemiroglu E; Moskowitz MA; Uemura Y; Wei EP; Kontos HA
    J Cereb Blood Flow Metab; 1991 Mar; 11(2):261-71. PubMed ID: 1705254
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distribution and origin of calcitonin gene-related peptide (CGRP) immunoreactivity in the sensory innervation of the mammalian eye.
    Terenghi G; Polak JM; Ghatei MA; Mulderry PK; Butler JM; Unger WG; Bloom SR
    J Comp Neurol; 1985 Mar; 233(4):506-16. PubMed ID: 2579983
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Immunohistochemical evidence for a substance P-containing trigeminovascular pathway to pial arteries in cats.
    Liu-Chen LY; Mayberg MR; Moskowitz MA
    Brain Res; 1983 May; 268(1):162-6. PubMed ID: 6190538
    [No Abstract]   [Full Text] [Related]  

  • 28. Effects of cholecystokinin octapeptide on pial arteriolar diameter.
    McCulloch J; Kelly PA
    J Cereb Blood Flow Metab; 1984 Dec; 4(4):625-8. PubMed ID: 6094602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contributions from the upper cervical dorsal roots and trigeminal ganglia to the feline circle of Willis.
    Saito K; Moskowitz MA
    Stroke; 1989 Apr; 20(4):524-6. PubMed ID: 2467409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Occurrence and distribution of substance P receptors in the cerebral blood vessels of the rat.
    Shimizu T; Koto A; Suzuki N; Morita Y; Takao M; Otomo S; Fukuuchi Y
    Brain Res; 1999 Jun; 830(2):372-8. PubMed ID: 10366695
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parasympathetic denervation of rat pial vessels significantly increases infarction volume following middle cerebral artery occlusion.
    Kano M; Moskowitz MA; Yokota M
    J Cereb Blood Flow Metab; 1991 Jul; 11(4):628-37. PubMed ID: 2050751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Origins and distribution of cerebrovascular nerve fibers showing calcitonin gene-related peptide-like immunoreactivity in the major cerebral artery of the dog.
    Nozaki K; Uemura Y; Okamoto S; Kikuchi H; Mizuno N
    J Comp Neurol; 1990 Jul; 297(2):219-26. PubMed ID: 2370321
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization of the m5 muscarinic cholinergic receptor in rat circle of Willis and pial arteries.
    Tayebati SK; Di Tullio MA; Tomassoni D; Amenta F
    Neuroscience; 2003; 122(1):205-11. PubMed ID: 14596861
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two distinct calcitonin gene-related peptide-containing peripheral nervous systems: distribution and quantitative differences between the iris and cerebral artery with special reference to substance P.
    Matsuyama T; Wanaka A; Yoneda S; Kimura K; Kamada T; Girgis S; MacIntyre I; Emson PC; Tohyama M
    Brain Res; 1986 May; 373(1-2):205-12. PubMed ID: 2424551
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-localization of the vanilloid capsaicin receptor and substance P in sensory nerve fibers innervating cochlear and vertebro-basilar arteries.
    Vass Z; Dai CF; Steyger PS; Jancsó G; Trune DR; Nuttall AL
    Neuroscience; 2004; 124(4):919-27. PubMed ID: 15026132
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Responses of small rabbit pial arteries in vitro.
    Duckles SP; Bevan JA
    Blood Vessels; 1979; 16(2):80-6. PubMed ID: 427284
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effect of sympathectomy on calcitonin gene-related peptide levels in the rat trigeminovascular system.
    Schon F; Ghatei M; Allen JM; Mulderry PK; Kelly JS; Bloom SR
    Brain Res; 1985 Nov; 348(1):197-200. PubMed ID: 3877546
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cerebrovascular nerve fibers immunoreactive for tryptophan-5-hydroxylase in the rat: distribution, putative origin and comparison with sympathetic noradrenergic nerves.
    Cohen Z; Bovento G; Lacombe P; Seylaz J; MacKenzie ET; Hamel E
    Brain Res; 1992 Dec; 598(1-2):203-14. PubMed ID: 1486481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NADPH-diaphorase-containing cerebrovascular nerve fibres and their possible origin in the pig.
    Sienkiewicz W; Kaleczyc J; Majewski M; Lakomy M
    J Hirnforsch; 1995; 36(3):353-63. PubMed ID: 7560908
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Adrenergic innervation of the arteries of different diameters in the human and animal pia mater].
    Chertok VM; Lomakin AV; Pigolkin IuI
    Biull Eksp Biol Med; 1987 Feb; 103(2):215-8. PubMed ID: 3814807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.