These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 3907755)

  • 1. Neurotoxic amino acid lesions of the lateral hypothalamus: a parametric comparison of the effects of ibotenate, N-methyl-D,L-aspartate and quisqualate in the rat.
    Hastings MH; Winn P; Dunnett SB
    Brain Res; 1985 Dec; 360(1-2):248-56. PubMed ID: 3907755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ibotenic acid lesions of the lateral hypothalamus: comparison with the electrolytic lesion syndrome.
    Winn P; Tarbuck A; Dunnett SB
    Neuroscience; 1984 May; 12(1):225-40. PubMed ID: 6462446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of electrolytic and ibotenic acid lesions in the lateral hypothalamus.
    Markowska A; Bakke HK; Walther B; Ursin H
    Brain Res; 1985 Mar; 328(2):313-23. PubMed ID: 3986529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavioural, biochemical and histochemical effects of different neurotoxic amino acids injected into nucleus basalis magnocellularis of rats.
    Dunnett SB; Whishaw IQ; Jones GH; Bunch ST
    Neuroscience; 1987 Feb; 20(2):653-69. PubMed ID: 3295586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Peripheral type benzodiazepine binding sites are a sensitive indirect index of neuronal damage.
    Benavides J; Fage D; Carter C; Scatton B
    Brain Res; 1987 Sep; 421(1-2):167-72. PubMed ID: 2891401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutamate receptors and phosphoinositide metabolism: stimulation via quisqualate receptors is inhibited by N-methyl-D-aspartate receptor activation.
    Palmer E; Monaghan DT; Cotman CW
    Brain Res; 1988 Sep; 464(2):161-5. PubMed ID: 2905924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ibotenic acid lesions of the lateral hypothalamus: comparison with 6-hydroxydopamine-induced sensorimotor deficits.
    Dunnett SB; Lane DM; Winn P
    Neuroscience; 1985 Feb; 14(2):509-18. PubMed ID: 3921869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nucleus basalis magnocellularis and memory: differential effects of two neurotoxins.
    Markowska AL; Wenk GL; Olton DS
    Behav Neural Biol; 1990 Jul; 54(1):13-26. PubMed ID: 2198869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ibotenic acid-induced neuronal degeneration in the medial preoptic area and the lateral hypothalamic area on sexual behavior in the male rat.
    Hansen S; Köhler C; Goldstein M; Steinbusch HV
    Brain Res; 1982 May; 239(1):213-32. PubMed ID: 7093677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of excitotoxic lesions of the basal forebrain by kainate, quinolinate, ibotenate, N-methyl-D-aspartate or quisqualate, and the effects on toxicity of 2-amino-5-phosphonovaleric acid and kynurenic acid in the rat.
    Winn P; Stone TW; Latimer M; Hastings MH; Clark AJ
    Br J Pharmacol; 1991 Apr; 102(4):904-8. PubMed ID: 1677299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
    Verdoorn TA; Dingledine R
    Mol Pharmacol; 1988 Sep; 34(3):298-307. PubMed ID: 2901662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of excitotoxin lesions of the lateral hypothalamus on self-stimulation reward.
    Stellar JR; Hall FS; Waraczynski M
    Brain Res; 1991 Feb; 541(1):29-40. PubMed ID: 2029622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Choline acetyltransferase depletion in the rat retina after intraocular injection of neurotoxins.
    Gómez-Ramos P; Estrada C; Pérez-Rico C
    J Neurochem; 1985 Mar; 44(3):993-5. PubMed ID: 3882887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral and biochemical consequences of combined lesions of the medial septum/diagonal band and nucleus basalis in the rat when ibotenic acid, quisqualic acid, and AMPA are used.
    Waite JJ; Chen AD; Wardlow ML; Thal LJ
    Exp Neurol; 1994 Dec; 130(2):214-29. PubMed ID: 7532591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitatory amino acid treatment of the ventromedial globus pallidus enhances dopamine utilization in the prefrontal cortex of the rat via the thalamic mediodorsal nucleus.
    Jones MW; Kilpatrick IC; Phillipson OT
    Synapse; 1989; 4(4):294-304. PubMed ID: 2603148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nerve growth factor treatment on rats with lesions of the nucleus basalis magnocellularis produced by ibotenic acid, quisqualic acid, and AMPA.
    Winkler J; Thal LJ
    Exp Neurol; 1995 Dec; 136(2):234-50. PubMed ID: 7498413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An animal model for neuron-specific spinal cord lesions by the microinjection of N-methylaspartate, kainic acid, and quisqualic acid.
    Pisharodi M; Nauta HJ
    Appl Neurophysiol; 1985; 48(1-6):226-33. PubMed ID: 3017208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesions of putative glutamatergic pathways potentiate the increase of inositol phospholipid hydrolysis elicited by excitatory amino acids.
    Nicoletti F; Wroblewski JT; Alho H; Eva C; Fadda E; Costa E
    Brain Res; 1987 Dec; 436(1):103-12. PubMed ID: 2891413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulation of NMDA receptor-mediated responses by glycine and D-serine in the rat thalamus in vivo.
    Salt TE
    Brain Res; 1989 Mar; 481(2):403-6. PubMed ID: 2541862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subtypes of excitatory amino acid receptors involved in the stimulation of [3H]dopamine release from cell cultures of rat ventral mesencephalon.
    Mount H; Quirion R; Kohn-Alexander J; Boksa P
    Synapse; 1990; 5(4):271-80. PubMed ID: 2163120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.