These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 39077998)
61. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Liu J; Li F; Liu C; Wang H; Ren B; Yang K; Zhang E Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():392-400. PubMed ID: 24411393 [TBL] [Abstract][Full Text] [Related]
62. Enhanced Mechanical Properties, Corrosion Resistance, Cytocompatibility, Osteogenesis, and Antibacterial Performance of Biodegradable Mg-2Zn-0.5Ca-0.5Sr/Zr Alloys for Bone-Implant Application. Tong X; Dong Y; Zhou R; Shen X; Li Y; Jiang Y; Wang H; Wang J; Lin J; Wen C Adv Healthc Mater; 2024 May; 13(12):e2303975. PubMed ID: 38235953 [TBL] [Abstract][Full Text] [Related]
63. Biocompatibility, osseointegration, antibacterial and mechanical properties of nanocrystalline Ti-Cu alloy as a new orthopedic material. Moniri Javadhesari S; Alipour S; Akbarpour MR Colloids Surf B Biointerfaces; 2020 May; 189():110889. PubMed ID: 32114284 [TBL] [Abstract][Full Text] [Related]
64. Microstructure, mechanical properties, and degradation of Mg-Ag alloy after equal-channel angular pressing. Bryła K; Horky J; Krystian M; Lityńska-Dobrzyńska L; Mingler B Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110543. PubMed ID: 32228913 [TBL] [Abstract][Full Text] [Related]
65. Microstructures, mechanical properties, and degradation behaviors of heat-treated Mg-Sr alloys as potential biodegradable implant materials. Wang Y; Tie D; Guan R; Wang N; Shang Y; Cui T; Li J J Mech Behav Biomed Mater; 2018 Jan; 77():47-57. PubMed ID: 28888933 [TBL] [Abstract][Full Text] [Related]
66. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Li G; Yang H; Zheng Y; Chen XH; Yang JA; Zhu D; Ruan L; Takashima K Acta Biomater; 2019 Oct; 97():23-45. PubMed ID: 31349057 [TBL] [Abstract][Full Text] [Related]
67. Investigation of zinc‑copper alloys as potential materials for craniomaxillofacial osteosynthesis implants. Li P; Zhang W; Dai J; Xepapadeas AB; Schweizer E; Alexander D; Scheideler L; Zhou C; Zhang H; Wan G; Geis-Gerstorfer J Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109826. PubMed ID: 31349503 [TBL] [Abstract][Full Text] [Related]
68. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Huang H; Li G; Jia Q; Bian D; Guan S; Kulyasova O; Valiev RZ; Rau JV; Zheng Y Acta Biomater; 2022 Oct; 152():1-18. PubMed ID: 36028200 [TBL] [Abstract][Full Text] [Related]
69. Ag Sun X; Gong H; Li D; Dong L; Zhao M; Wan R; Gu H Nanomedicine (Lond); 2017 Sep; 12(18):2257-2268. PubMed ID: 28814165 [TBL] [Abstract][Full Text] [Related]
70. Development of Cu-bearing powder metallurgy Ti alloys for biomedical applications. Bolzoni L; Yang F J Mech Behav Biomed Mater; 2019 Sep; 97():41-48. PubMed ID: 31096149 [TBL] [Abstract][Full Text] [Related]
71. What controls the antibacterial activity of Ti-Ag alloy, Ag ion or Ti Shi A; Zhu C; Fu S; Wang R; Qin G; Chen D; Zhang E Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110548. PubMed ID: 32228943 [TBL] [Abstract][Full Text] [Related]
72. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Jia H; Hou W; Wei L; Xu B; Liu X Dent Mater; 2008 Feb; 24(2):244-9. PubMed ID: 17822754 [TBL] [Abstract][Full Text] [Related]
73. [Study of the influence of the anodic potential on metal-components dissolution from dental alloys]. Kobayashi H Shikwa Gakuho; 1989 Nov; 89(11):1679-97. PubMed ID: 2488976 [TBL] [Abstract][Full Text] [Related]
74. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878 [TBL] [Abstract][Full Text] [Related]
75. Fine-tuning of mechanical properties in a Zn-Ag-Mg alloy via cold plastic deformation process and post-deformation annealing. Wątroba M; Bednarczyk W; Kawałko J; Bała P Bioact Mater; 2021 Oct; 6(10):3424-3436. PubMed ID: 33817418 [TBL] [Abstract][Full Text] [Related]
76. Fabrication and characterization of biodegradable Zn-Cu-Mn alloy micro-tubes and vascular stents: Microstructure, texture, mechanical properties and corrosion behavior. Jiang J; Huang H; Niu J; Zhu D; Yuan G Acta Biomater; 2022 Oct; 151():647-660. PubMed ID: 35917908 [TBL] [Abstract][Full Text] [Related]
77. Effect of heat treatment on the bio-corrosion properties and wear resistance of antibacterial Co-29Cr-6Mo-xCu alloys. Li W; Wang X; Liu C; Qin G; Zhang E J Mater Sci Mater Med; 2019 Oct; 30(10):112. PubMed ID: 31583472 [TBL] [Abstract][Full Text] [Related]
78. Ag-Introduced Antibacterial Ability and Corrosion Resistance for Bio-Mg Alloys. Shuai C; Zhou Y; Yang Y; Gao C; Peng S; Wang G Biomed Res Int; 2018; 2018():6023460. PubMed ID: 30112405 [TBL] [Abstract][Full Text] [Related]
79. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys. Zhang E; Li S; Ren J; Zhang L; Han Y Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():760-8. PubMed ID: 27612770 [TBL] [Abstract][Full Text] [Related]
80. The synergistic antibacterial activity and mechanism of multicomponent metal ions-containing aqueous solutions against Staphylococcus aureus. Wang X; Liu S; Li M; Yu P; Chu X; Li L; Tan G; Wang Y; Chen X; Zhang Y; Ning C J Inorg Biochem; 2016 Oct; 163():214-220. PubMed ID: 27569414 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]