BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 3907814)

  • 1. Morphological studies of N-acetylglucosamine induced germ tube formation by Candida albicans.
    Hubbard MJ; Sullivan PA; Shepherd MG
    Can J Microbiol; 1985 Aug; 31(8):696-701. PubMed ID: 3907814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The requirements for bicarbonate and metabolism of the inducer during germ tube formation by Candida albicans.
    Pollack JH; Hashimoto T
    Can J Microbiol; 1988 Nov; 34(11):1183-8. PubMed ID: 2850098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. N-acetyl-D-glucosamine-induced morphogenesis in Candida albicans.
    Cassone A; Sullivan PA; Shepherd MG
    Microbiologica; 1985 Jan; 8(1):85-99. PubMed ID: 3883103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of mycelial type of development in Candida albicans by the antibiotic monorden and N-acetyl-D-glucosamine.
    Hrmová M; Drobnica L
    Mycopathologia; 1982 Jul; 79(1):55-64. PubMed ID: 6750407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of germ tube formation by N-acetyl-D-glucosamine in Candida albicans: uptake of inducer and germinative response.
    Mattia E; Carruba G; Angiolella L; Cassone A
    J Bacteriol; 1982 Nov; 152(2):555-62. PubMed ID: 6752114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of N-acetyl-D-glucosamine catabolic enzymes and germinative response in Candida albicans.
    Natarajan K; Rai YP; Datta A
    Biochem Int; 1984 Dec; 9(6):735-44. PubMed ID: 6395867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formation.
    Sullivan PA; Yin CY; Molloy C; Templeton MD; Shepherd MG
    Can J Microbiol; 1983 Nov; 29(11):1514-25. PubMed ID: 6322947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi.
    Herrero AB; López MC; Fernández-Lago L; Domínguez A
    Microbiology (Reading); 1999 Oct; 145 ( Pt 10)():2727-37. PubMed ID: 10537194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrastructural investigations of the formation of Candida albicans germ tubes and septa.
    Scherwitz C; Martin R; Ueberberg H
    Sabouraudia; 1978 Jun; 16(2):115-24. PubMed ID: 358432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemin induces germ tube formation in Candida albicans.
    Casanova M; Cervera AM; Gozalbo D; Martínez JP
    Infect Immun; 1997 Oct; 65(10):4360-4. PubMed ID: 9317050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Germ tube formation from zonal rotor fractions of Candida albicans.
    Chaffin WL; Sogin SJ
    J Bacteriol; 1976 May; 126(2):771-6. PubMed ID: 770454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunocytochemical localization of in vitro binding of human fibrinogen to Candida albicans germ tube and mycelium.
    Tronchin G; Robert R; Bouali A; Senet JM
    Ann Inst Pasteur Microbiol; 1987; 138(2):177-87. PubMed ID: 3300723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein synthesis and amino acid pool during yeast-mycelial transition induced by N-acetyl-D-glucosamine in Candida albicans.
    Torosantucci A; Angiolella L; Filesi C; Cassone A
    J Gen Microbiol; 1984 Dec; 130(12):3285-93. PubMed ID: 6394717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gratuitous induction by N-acetylmannosamine of germ tube formation and enzymes for N-acetylglucosamine utilization in Candida albicans.
    Sullivan PA; Shepherd MG
    J Bacteriol; 1982 Sep; 151(3):1118-22. PubMed ID: 6286591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrastructural localization of anionic sites on the surface of yeast, hyphal and germ-tube forming cells of Candida albicans.
    Horisberger M; Clerc MF
    Eur J Cell Biol; 1988 Aug; 46(3):444-52. PubMed ID: 3053174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scanning electron microscopic study on the effect of tunicamycin on Candida albicans.
    Vespa MN; Lebecq JC; Simonetti N
    Mycoses; 1993; 36(11-12):397-403. PubMed ID: 7935571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnesium and the regulation of germ-tube formation in Candida albicans.
    Walker GM; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1984 Aug; 130(8):1941-5. PubMed ID: 6432954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enzymes of N-acetylglucosamine metabolism during germ-tube formation in Candida albicans.
    Gopal P; Sullivan PA; Shepherd MG
    J Gen Microbiol; 1982 Oct; 128(10):2319-26. PubMed ID: 6296272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid differentiation of Candida albicans from other Candida species using its unique germ tube formation at 39 degrees C.
    Kim D; Shin WS; Lee KH; Kim K; Young Park J; Koh CM
    Yeast; 2002 Aug; 19(11):957-62. PubMed ID: 12125052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological changes of Candida albicans induced by BMY-28864, a highly water-soluble pradimicin derivative.
    Numata K; Ueki T; Naito N; Yamada N; Kamasawa N; Oki T; Osumi M
    J Electron Microsc (Tokyo); 1993 Jun; 42(3):147-55. PubMed ID: 8376921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.