These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 39078500)
1. CRISPR-Cas9 mediated understanding of plants' abiotic stress-responsive genes to combat changing climatic patterns. Choudry MW; Riaz R; Nawaz P; Ashraf M; Ijaz B; Bakhsh A Funct Integr Genomics; 2024 Jul; 24(4):132. PubMed ID: 39078500 [TBL] [Abstract][Full Text] [Related]
2. Potential Application of CRISPR/Cas9 System to Engineer Abiotic Stress Tolerance in Plants. Ahmed T; Noman M; Shahid M; Muhammad S; Tahir Ul Qamar M; Ali MA; Maqsood A; Hafeez R; Ogunyemi SO; Li B Protein Pept Lett; 2021; 28(8):861-877. PubMed ID: 33602066 [TBL] [Abstract][Full Text] [Related]
3. Engineering abiotic stress tolerance via CRISPR/ Cas-mediated genome editing. Zafar SA; Zaidi SS; Gaba Y; Singla-Pareek SL; Dhankher OP; Li X; Mansoor S; Pareek A J Exp Bot; 2020 Jan; 71(2):470-479. PubMed ID: 31644801 [TBL] [Abstract][Full Text] [Related]
4. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Debbarma J; Sarki YN; Saikia B; Boruah HPD; Singha DL; Chikkaputtaiah C Mol Biotechnol; 2019 Feb; 61(2):153-172. PubMed ID: 30600447 [TBL] [Abstract][Full Text] [Related]
5. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Kumar M; Prusty MR; Pandey MK; Singh PK; Bohra A; Guo B; Varshney RK Front Plant Sci; 2023; 14():1157678. PubMed ID: 37143874 [TBL] [Abstract][Full Text] [Related]
6. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. Shelake RM; Kadam US; Kumar R; Pramanik D; Singh AK; Kim JY Plant Commun; 2022 Nov; 3(6):100417. PubMed ID: 35927945 [TBL] [Abstract][Full Text] [Related]
7. Modern Trends in Plant Genome Editing: An Inclusive Review of the CRISPR/Cas9 Toolbox. Razzaq A; Saleem F; Kanwal M; Mustafa G; Yousaf S; Imran Arshad HM; Hameed MK; Khan MS; Joyia FA Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31430902 [TBL] [Abstract][Full Text] [Related]
8. State-of-the-Art in CRISPR Technology and Engineering Drought, Salinity, and Thermo-tolerant crop plants. Chennakesavulu K; Singh H; Trivedi PK; Jain M; Yadav SR Plant Cell Rep; 2022 Mar; 41(3):815-831. PubMed ID: 33742256 [TBL] [Abstract][Full Text] [Related]
9. Epigenomics in stress tolerance of plants under the climate change. Kumar M; Rani K Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas: A powerful tool for gene function study and crop improvement. Zhang D; Zhang Z; Unver T; Zhang B J Adv Res; 2021 Mar; 29():207-221. PubMed ID: 33842017 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas tool designs for multiplex genome editing and its applications in developing biotic and abiotic stress-resistant crop plants. Singh J; Sharma D; Brar GS; Sandhu KS; Wani SH; Kashyap R; Kour A; Singh S Mol Biol Rep; 2022 Dec; 49(12):11443-11467. PubMed ID: 36002653 [TBL] [Abstract][Full Text] [Related]
12. Genome editing using CRISPR/Cas9-targeted mutagenesis: An opportunity for yield improvements of crop plants grown under environmental stresses. Abdelrahman M; Al-Sadi AM; Pour-Aboughadareh A; Burritt DJ; Tran LP Plant Physiol Biochem; 2018 Oct; 131():31-36. PubMed ID: 29628199 [TBL] [Abstract][Full Text] [Related]
13. Alternative Strategies for Multi-Stress Tolerance and Yield Improvement in Millets. Numan M; Serba DD; Ligaba-Osena A Genes (Basel); 2021 May; 12(5):. PubMed ID: 34068886 [TBL] [Abstract][Full Text] [Related]
14. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792 [TBL] [Abstract][Full Text] [Related]
15. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing. Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B Cells; 2022 Nov; 11(22):. PubMed ID: 36429019 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas Genome Editing Technologies for Plant Improvement against Biotic and Abiotic Stresses: Advances, Limitations, and Future Perspectives. Wang Y; Zafar N; Ali Q; Manghwar H; Wang G; Yu L; Ding X; Ding F; Hong N; Wang G; Jin S Cells; 2022 Dec; 11(23):. PubMed ID: 36497186 [TBL] [Abstract][Full Text] [Related]
17. Genome Editing in Cereals: Approaches, Applications and Challenges. Ansari WA; Chandanshive SU; Bhatt V; Nadaf AB; Vats S; Katara JL; Sonah H; Deshmukh R Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516948 [TBL] [Abstract][Full Text] [Related]
18. CRISPR-Cas9-based genetic engineering for crop improvement under drought stress. Sami A; Xue Z; Tazein S; Arshad A; He Zhu Z; Ping Chen Y; Hong Y; Tian Zhu X; Jin Zhou K Bioengineered; 2021 Dec; 12(1):5814-5829. PubMed ID: 34506262 [TBL] [Abstract][Full Text] [Related]
19. Biotechnological Advances to Improve Abiotic Stress Tolerance in Crops. Villalobos-López MA; Arroyo-Becerra A; Quintero-Jiménez A; Iturriaga G Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233352 [TBL] [Abstract][Full Text] [Related]
20. CRISPR/Cas9-based genome editing and functional analysis of Saikia B; S R; Debbarma J; Maharana J; Sastry GN; Chikkaputtaiah C Front Plant Sci; 2024; 15():1304381. PubMed ID: 38371406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]