These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 39079037)

  • 1. Diagnostic Performance of Machine Learning-based Models in Neonatal Sepsis: A Systematic Review.
    Kainth D; Prakash S; Sankar MJ
    Pediatr Infect Dis J; 2024 Sep; 43(9):889-901. PubMed ID: 39079037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prognostic models for newly-diagnosed chronic lymphocytic leukaemia in adults: a systematic review and meta-analysis.
    Kreuzberger N; Damen JA; Trivella M; Estcourt LJ; Aldin A; Umlauff L; Vazquez-Montes MD; Wolff R; Moons KG; Monsef I; Foroutan F; Kreuzer KA; Skoetz N
    Cochrane Database Syst Rev; 2020 Jul; 7(7):CD012022. PubMed ID: 32735048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Presepsin for the Diagnosis of Neonatal Early-Onset Sepsis: A Systematic Review and Meta-analysis.
    Poggi C; Lucenteforte E; Petri D; De Masi S; Dani C
    JAMA Pediatr; 2022 Aug; 176(8):750-758. PubMed ID: 35639395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning models for diabetes management in acute care using electronic medical records: A systematic review.
    Kamel Rahimi A; Canfell OJ; Chan W; Sly B; Pole JD; Sullivan C; Shrapnel S
    Int J Med Inform; 2022 Apr; 162():104758. PubMed ID: 35398812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diagnostic value of maternal, cord blood and neonatal biomarkers for early-onset sepsis: a systematic review and meta-analysis.
    van Leeuwen LM; Fourie E; van den Brink G; Bekker V; van Houten MA
    Clin Microbiol Infect; 2024 Jul; 30(7):850-857. PubMed ID: 38467246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of C-Reactive Protein Diagnostic Test Accuracy for Late-Onset Infection in Newborn Infants: A Systematic Review and Meta-analysis.
    Brown JVE; Meader N; Wright K; Cleminson J; McGuire W
    JAMA Pediatr; 2020 Mar; 174(3):260-268. PubMed ID: 32011640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Routine screening for colonization by Gram-negative bacteria in neonates at intensive care units for the prediction of sepsis: systematic review and meta-analysis.
    Seidel J; Haller S; Eckmanns T; Harder T
    J Hosp Infect; 2018 Aug; 99(4):367-380. PubMed ID: 29577993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting late-onset sepsis by routine neonatal screening for colonisation by gram-negative bacteria in neonates at intensive care units: a protocol for a systematic review.
    Harder T; Seidel J; Eckmanns T; Weiss B; Haller S
    BMJ Open; 2017 Mar; 7(3):e014986. PubMed ID: 28360256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: a meta-analysis and systematic review.
    Ruan L; Chen GY; Liu Z; Zhao Y; Xu GY; Li SF; Li CN; Chen LS; Tao Z
    Crit Care; 2018 Nov; 22(1):316. PubMed ID: 30463590
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis.
    Stocker M; Daunhawer I; van Herk W; El Helou S; Dutta S; Schuerman FABA; van den Tooren-de Groot RK; Wieringa JW; Janota J; van der Meer-Kappelle LH; Moonen R; Sie SD; de Vries E; Donker AE; Zimmerman U; Schlapbach LJ; de Mol AC; Hoffmann-Haringsma A; Roy M; Tomaske M; Kornelisse RF; van Gijsel J; Plötz FB; Wellmann S; Achten NB; Lehnick D; van Rossum AMC; Vogt JE
    Pediatr Infect Dis J; 2022 Mar; 41(3):248-254. PubMed ID: 34508027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy.
    Fleuren LM; Klausch TLT; Zwager CL; Schoonmade LJ; Guo T; Roggeveen LF; Swart EL; Girbes ARJ; Thoral P; Ercole A; Hoogendoorn M; Elbers PWG
    Intensive Care Med; 2020 Mar; 46(3):383-400. PubMed ID: 31965266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of machine learning in predicting hospital readmissions: a scoping review of the literature.
    Huang Y; Talwar A; Chatterjee S; Aparasu RR
    BMC Med Res Methodol; 2021 May; 21(1):96. PubMed ID: 33952192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The comparative and added prognostic value of biomarkers to the Revised Cardiac Risk Index for preoperative prediction of major adverse cardiac events and all-cause mortality in patients who undergo noncardiac surgery.
    Vernooij LM; van Klei WA; Moons KG; Takada T; van Waes J; Damen JA
    Cochrane Database Syst Rev; 2021 Dec; 12(12):CD013139. PubMed ID: 34931303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of sepsis patients using machine learning approach: A meta-analysis.
    Islam MM; Nasrin T; Walther BA; Wu CC; Yang HC; Li YC
    Comput Methods Programs Biomed; 2019 Mar; 170():1-9. PubMed ID: 30712598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Search strategies to identify diagnostic accuracy studies in MEDLINE and EMBASE.
    Beynon R; Leeflang MM; McDonald S; Eisinga A; Mitchell RL; Whiting P; Glanville JM
    Cochrane Database Syst Rev; 2013 Sep; 2013(9):MR000022. PubMed ID: 24022476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of presepsin in neonatal sepsis: systematic review and meta-analysis.
    Parri N; Trippella G; Lisi C; De Martino M; Galli L; Chiappini E
    Expert Rev Anti Infect Ther; 2019 Apr; 17(4):223-232. PubMed ID: 30775935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning in Differentiating Gliomas from Primary CNS Lymphomas: A Systematic Review, Reporting Quality, and Risk of Bias Assessment.
    Cassinelli Petersen GI; Shatalov J; Verma T; Brim WR; Subramanian H; Brackett A; Bahar RC; Merkaj S; Zeevi T; Staib LH; Cui J; Omuro A; Bronen RA; Malhotra A; Aboian MS
    AJNR Am J Neuroradiol; 2022 Apr; 43(4):526-533. PubMed ID: 35361577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accuracy of the neutrophil-to-lymphocyte ratio for the diagnosis of neonatal sepsis: a systematic review and meta-analysis.
    Xin Y; Shao Y; Mu W; Li H; Zhou Y; Wang C
    BMJ Open; 2022 Dec; 12(12):e060391. PubMed ID: 36517090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.