These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 39079542)

  • 1. 'Beyond Li-ion technology'-a status review.
    Banerjee AN; Joo SW
    Nanotechnology; 2024 Sep; 35(47):. PubMed ID: 39079542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promises and Challenges of Next-Generation "Beyond Li-ion" Batteries for Electric Vehicles and Grid Decarbonization.
    Tian Y; Zeng G; Rutt A; Shi T; Kim H; Wang J; Koettgen J; Sun Y; Ouyang B; Chen T; Lun Z; Rong Z; Persson K; Ceder G
    Chem Rev; 2021 Feb; 121(3):1623-1669. PubMed ID: 33356176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A chemistry and material perspective on lithium redox flow batteries towards high-density electrical energy storage.
    Zhao Y; Ding Y; Li Y; Peng L; Byon HR; Goodenough JB; Yu G
    Chem Soc Rev; 2015 Nov; 44(22):7968-96. PubMed ID: 26265165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable Recycling Technology for Li-Ion Batteries and Beyond: Challenges and Future Prospects.
    Fan E; Li L; Wang Z; Lin J; Huang Y; Yao Y; Chen R; Wu F
    Chem Rev; 2020 Jul; 120(14):7020-7063. PubMed ID: 31990183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Energy Batteries: Beyond Lithium-Ion and Their Long Road to Commercialisation.
    Gao Y; Pan Z; Sun J; Liu Z; Wang J
    Nanomicro Lett; 2022 Apr; 14(1):94. PubMed ID: 35384559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in the Development of Organic and Organometallic Redox Shuttles for Lithium-Ion Redox Flow Batteries.
    Pham-Truong TN; Wang Q; Ghilane J; Randriamahazaka H
    ChemSusChem; 2020 May; 13(9):2142-2159. PubMed ID: 32293115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards K-Ion and Na-Ion Batteries as "Beyond Li-Ion".
    Kubota K; Dahbi M; Hosaka T; Kumakura S; Komaba S
    Chem Rec; 2018 Apr; 18(4):459-479. PubMed ID: 29442429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.
    Wu F; Maier J; Yu Y
    Chem Soc Rev; 2020 Mar; 49(5):1569-1614. PubMed ID: 32055806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sodium-Ion Battery: Can It Compete with Li-Ion?
    Kim H
    ACS Mater Au; 2023 Nov; 3(6):571-575. PubMed ID: 38089661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium-Ion Batteries: Current State-of-the-Art and Future Perspectives.
    Gummow RJ; Vamvounis G; Kannan MB; He Y
    Adv Mater; 2018 Sep; 30(39):e1801702. PubMed ID: 29984434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Materials Design and Mechanistic Understanding of Tellurium and Tellurium-Sulfur Cathodes for Rechargeable Batteries.
    Zhang Y; Liu J
    Acc Chem Res; 2024 Sep; 57(17):2500-2511. PubMed ID: 39137405
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen-Based Anion Redox for Lithium Batteries.
    Li M; Bi X; Amine K; Lu J
    Acc Chem Res; 2020 Aug; 53(8):1436-1444. PubMed ID: 32634307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and prospects of lithium-sulfur batteries.
    Manthiram A; Fu Y; Su YS
    Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review on spent Mn-containing Li-ion batteries: Recovery technologies, challenges, and future perspectives.
    Guo M; Zhang B; Gao M; Deng R; Zhang Q
    J Environ Manage; 2024 Mar; 354():120454. PubMed ID: 38412733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 30 Years of Lithium-Ion Batteries.
    Li M; Lu J; Chen Z; Amine K
    Adv Mater; 2018 Jun; ():e1800561. PubMed ID: 29904941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of Degradation and Strategies for the Stabilization of Cathode-Electrolyte Interfaces in Li-Ion Batteries.
    Cabana J; Kwon BJ; Hu L
    Acc Chem Res; 2018 Feb; 51(2):299-308. PubMed ID: 29384354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review.
    Chattopadhyay J; Pathak TS; Santos DMF
    Polymers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfate-Based Cathode Materials for Li- and Na-Ion Batteries.
    Lander L; Tarascon JM; Yamada A
    Chem Rec; 2018 Oct; 18(10):1394-1408. PubMed ID: 30203910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the state of Lithium-Sulphur and lithium-ion batteries applied to electromobility.
    Benveniste G; Rallo H; Canals Casals L; Merino A; Amante B
    J Environ Manage; 2018 Nov; 226():1-12. PubMed ID: 30103198
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.