These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. One-step production of biodiesel from wet and unbroken microalgae biomass using deep eutectic solvent. Pan Y; Alam MA; Wang Z; Huang D; Hu K; Chen H; Yuan Z Bioresour Technol; 2017 Aug; 238():157-163. PubMed ID: 28433903 [TBL] [Abstract][Full Text] [Related]
4. A new approach of microalgal biomass pretreatment using deep eutectic solvents for enhanced lipid recovery for biodiesel production. Lu W; Alam MA; Pan Y; Wu J; Wang Z; Yuan Z Bioresour Technol; 2016 Oct; 218():123-8. PubMed ID: 27359060 [TBL] [Abstract][Full Text] [Related]
5. A novel microalgal lipid extraction method using biodiesel (fatty acid methyl esters) as an extractant. Huang WC; Park CW; Kim JD Bioresour Technol; 2017 Feb; 226():94-98. PubMed ID: 27992796 [TBL] [Abstract][Full Text] [Related]
6. Comparative assessment of pretreatment strategies for production of microalgae-based biodiesel from locally isolated Chlorella homosphaera. Sandani WP; Nishshanka GKSH; Premaratne RGMM; Nanayakkara Wijayasekera SC; Ariyadasa TU; Premachandra JK J Biosci Bioeng; 2020 Sep; 130(3):295-305. PubMed ID: 32507481 [TBL] [Abstract][Full Text] [Related]
7. Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Zheng H; Ma X; Gao Z; Wan Y; Min M; Zhou W; Li Y; Liu Y; Huang H; Chen P; Ruan R Appl Biochem Biotechnol; 2015 Oct; 177(3):662-74. PubMed ID: 26234438 [TBL] [Abstract][Full Text] [Related]
8. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions. Mutanda T; Karthikeyan S; Bux F Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654 [TBL] [Abstract][Full Text] [Related]
9. Growth and metabolic characteristics of oleaginous microalgal isolates from Nilgiri biosphere Reserve of India. Thangavel K; Radha Krishnan P; Nagaiah S; Kuppusamy S; Chinnasamy S; Rajadorai JS; Nellaiappan Olaganathan G; Dananjeyan B BMC Microbiol; 2018 Jan; 18(1):1. PubMed ID: 29433435 [TBL] [Abstract][Full Text] [Related]
10. Bubble column photobioreactor (BCPR) for cultivating microalgae and microalgal consortium (Co-CC) with additional CO Mathivanan K; Ameen F; Zhang R; Ravi G; Beduru S Environ Res; 2023 Dec; 238(Pt 2):117284. PubMed ID: 37793593 [TBL] [Abstract][Full Text] [Related]
11. Biomass and lipid production of heterotrophic microalgae Chlorella protothecoides by using biodiesel-derived crude glycerol. Chen YH; Walker TH Biotechnol Lett; 2011 Oct; 33(10):1973-83. PubMed ID: 21691839 [TBL] [Abstract][Full Text] [Related]
12. Removal of nutrients from domestic wastewater by microalgae coupled to lipid augmentation for biodiesel production and influence of deoiled algal biomass as biofertilizer for Solanum lycopersicum cultivation. Silambarasan S; Logeswari P; Sivaramakrishnan R; Incharoensakdi A; Cornejo P; Kamaraj B; Chi NTL Chemosphere; 2021 Apr; 268():129323. PubMed ID: 33359999 [TBL] [Abstract][Full Text] [Related]
13. Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae. Bohutskyi P; Chow S; Ketter B; Fung Shek C; Yacar D; Tang Y; Zivojnovich M; Betenbaugh MJ; Bouwer EJ Bioresour Technol; 2016 Dec; 222():294-308. PubMed ID: 27728832 [TBL] [Abstract][Full Text] [Related]
14. Lipid production of microalga Chlorella sorokiniana CY1 is improved by light source arrangement, bioreactor operation mode and deep-sea water supplements. Chen CY; Chang HY Biotechnol J; 2016 Mar; 11(3):356-62. PubMed ID: 26632521 [TBL] [Abstract][Full Text] [Related]
15. Strategic valorization of de-oiled microalgal biomass waste as biofertilizer for sustainable and improved agriculture of rice (Oryza sativa L.) crop. Nayak M; Swain DK; Sen R Sci Total Environ; 2019 Sep; 682():475-484. PubMed ID: 31128367 [TBL] [Abstract][Full Text] [Related]
16. A Comparative Analysis Assessing Growth Dynamics of Locally Isolated Chlorella sorokiniana and Chlorella vulgaris for Biomass and Lipid Production with Biodiesel Potential. Usman HM; Kamaroddin MF; Sani MH; Malek NANN; Omoregie AI; Zainal A Bioresour Technol; 2024 Jul; 403():130868. PubMed ID: 38782193 [TBL] [Abstract][Full Text] [Related]
17. Direct biodiesel production from wet microalgae biomass of Chlorella pyrenoidosa through in situ transesterification. Cao H; Zhang Z; Wu X; Miao X Biomed Res Int; 2013; 2013():930686. PubMed ID: 24195081 [TBL] [Abstract][Full Text] [Related]
18. Effect of solvents and oil content on direct transesterification of wet oil-bearing microalgal biomass of Chlorella vulgaris ESP-31 for biodiesel synthesis using immobilized lipase as the biocatalyst. Tran DT; Chen CL; Chang JS Bioresour Technol; 2013 May; 135():213-21. PubMed ID: 23131310 [TBL] [Abstract][Full Text] [Related]
19. Methods of downstream processing for the production of biodiesel from microalgae. Kim J; Yoo G; Lee H; Lim J; Kim K; Kim CW; Park MS; Yang JW Biotechnol Adv; 2013 Nov; 31(6):862-76. PubMed ID: 23632376 [TBL] [Abstract][Full Text] [Related]
20. Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass. Olmstead IL; Kentish SE; Scales PJ; Martin GJ Bioresour Technol; 2013 Nov; 148():615-9. PubMed ID: 24080444 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]