These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 39080274)

  • 1. Retrosynthesis prediction with an iterative string editing model.
    Han Y; Xu X; Hsieh CY; Ding K; Xu H; Xu R; Hou T; Zhang Q; Chen H
    Nat Commun; 2024 Jul; 15(1):6404. PubMed ID: 39080274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing.
    Zhong W; Yang Z; Chen CY
    Nat Commun; 2023 May; 14(1):3009. PubMed ID: 37230985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention.
    Chen S; Jung Y
    JACS Au; 2021 Oct; 1(10):1612-1620. PubMed ID: 34723264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CNN-based two-branch multi-scale feature extraction network for retrosynthesis prediction.
    Yang F; Liu J; Zhang Q; Yang Z; Zhang X
    BMC Bioinformatics; 2022 Sep; 23(1):362. PubMed ID: 36056300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ualign: pushing the limit of template-free retrosynthesis prediction with unsupervised SMILES alignment.
    Zeng K; Yang B; Zhao X; Zhang Y; Nie F; Yang X; Jin Y; Xu Y
    J Cheminform; 2024 Jul; 16(1):80. PubMed ID: 39010144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transfer Learning: Making Retrosynthetic Predictions Based on a Small Chemical Reaction Dataset Scale to a New Level.
    Bai R; Zhang C; Wang L; Yao C; Ge J; Duan H
    Molecules; 2020 May; 25(10):. PubMed ID: 32438572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RPBP: Deep Retrosynthesis Reaction Prediction Based on Byproducts.
    Yan Y; Zhao Y; Yao H; Feng J; Liang L; Han W; Xu X; Pu C; Zang C; Chen L; Li Y; Liu H; Lu T; Chen Y; Zhang Y
    J Chem Inf Model; 2023 Oct; 63(19):5956-5970. PubMed ID: 37724339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reagent prediction with a molecular transformer improves reaction data quality.
    Andronov M; Voinarovska V; Andronova N; Wand M; Clevert DA; Schmidhuber J
    Chem Sci; 2023 Mar; 14(12):3235-3246. PubMed ID: 36970100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. G2GT: Retrosynthesis Prediction with Graph-to-Graph Attention Neural Network and Self-Training.
    Lin Z; Yin S; Shi L; Zhou W; Zhang YJ
    J Chem Inf Model; 2023 Apr; 63(7):1894-1905. PubMed ID: 36946514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State-of-the-art augmented NLP transformer models for direct and single-step retrosynthesis.
    Tetko IV; Karpov P; Van Deursen R; Godin G
    Nat Commun; 2020 Nov; 11(1):5575. PubMed ID: 33149154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MARS: a motif-based autoregressive model for retrosynthesis prediction.
    Liu J; Yan C; Yu Y; Lu C; Huang J; Ou-Yang L; Zhao P
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38426338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-step retrosynthesis prediction by leveraging commonly preserved substructures.
    Fang L; Li J; Zhao M; Tan L; Lou JG
    Nat Commun; 2023 Apr; 14(1):2446. PubMed ID: 37117216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the performance of models for one-step retrosynthesis through re-ranking.
    Lin MH; Tu Z; Coley CW
    J Cheminform; 2022 Mar; 14(1):15. PubMed ID: 35292121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. G
    Chen Z; Ayinde OR; Fuchs JR; Sun H; Ning X
    Commun Chem; 2023 May; 6(1):102. PubMed ID: 37253928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retrosynthesis prediction with an interpretable deep-learning framework based on molecular assembly tasks.
    Wang Y; Pang C; Wang Y; Jin J; Zhang J; Zeng X; Su R; Zou Q; Wei L
    Nat Commun; 2023 Oct; 14(1):6155. PubMed ID: 37788995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing diversity in language based models for single-step retrosynthesis.
    Toniato A; Vaucher AC; Schwaller P; Laino T
    Digit Discov; 2023 Apr; 2(2):489-501. PubMed ID: 37065677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RetroComposer: Composing Templates for Template-Based Retrosynthesis Prediction.
    Yan C; Zhao P; Lu C; Yu Y; Huang J
    Biomolecules; 2022 Sep; 12(9):. PubMed ID: 36139164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Few- and Zero-Shot Reaction Template Prediction Using Modern Hopfield Networks.
    Seidl P; Renz P; Dyubankova N; Neves P; Verhoeven J; Wegner JK; Segler M; Hochreiter S; Klambauer G
    J Chem Inf Model; 2022 May; 62(9):2111-2120. PubMed ID: 35034452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SB-Net: Synergizing CNN and LSTM networks for uncovering retrosynthetic pathways in organic synthesis.
    Mir BA; Tayara H; Chong KT
    Comput Biol Chem; 2024 Oct; 112():108130. PubMed ID: 38954849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SynCluster: Reaction Type Clustering and Recommendation Framework for Synthesis Planning.
    Liu T; Cao Z; Huang Y; Wan Y; Wu J; Hsieh CY; Hou T; Kang Y
    JACS Au; 2023 Dec; 3(12):3446-3461. PubMed ID: 38155655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.