These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 39080436)
1. AI-based rock strength assessment from tunnel face images using hybrid neural networks. Liu L; Song Z; Zhou P; He X; Zhao L Sci Rep; 2024 Jul; 14(1):17512. PubMed ID: 39080436 [TBL] [Abstract][Full Text] [Related]
2. Lithological Control on the Estimation of Uniaxial Compressive Strength by the P-Wave Velocity Using Supervised and Unsupervised Learning. Rahman T; Sarkar K Rock Mech Rock Eng; 2021; 54(6):3175-3191. PubMed ID: 33867648 [TBL] [Abstract][Full Text] [Related]
3. A Novel Method of Multitype Hybrid Rock Lithology Classification Based on Convolutional Neural Networks. Li D; Zhao J; Liu Z Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214474 [TBL] [Abstract][Full Text] [Related]
4. Predicting uniaxial compressive strength of rocks using ANN models: Incorporating porosity, compressional wave velocity, and schmidt hammer data. Asteris PG; Karoglou M; Skentou AD; Vasconcelos G; He M; Bakolas A; Zhou J; Armaghani DJ Ultrasonics; 2024 Jul; 141():107347. PubMed ID: 38781796 [TBL] [Abstract][Full Text] [Related]
5. Intelligent prediction of rockburst in tunnels based on back propagation neural network integrated beetle antennae search algorithm. Li G; Xue Y; Qu C; Qiu D; Wang P; Liu Q Environ Sci Pollut Res Int; 2023 Mar; 30(12):33960-33973. PubMed ID: 36502473 [TBL] [Abstract][Full Text] [Related]
6. A probability prediction method for the classification of surrounding rock quality of tunnels with incomplete data using Bayesian networks. Ma J; Li T; Li X; Zhou S; Ma C; Wei D; Dai K Sci Rep; 2022 Nov; 12(1):19846. PubMed ID: 36400855 [TBL] [Abstract][Full Text] [Related]
7. Stability Analysis of the Horseshoe Tunnel Face in Rock Masses. Liu J; Zhang Q; Liu A; Chen G Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744365 [TBL] [Abstract][Full Text] [Related]
8. Several machine learning techniques comparison for the prediction of the uniaxial compressive strength of carbonate rocks. Hassan MY; Arman H Sci Rep; 2022 Dec; 12(1):20969. PubMed ID: 36470991 [TBL] [Abstract][Full Text] [Related]
9. Analysis and construction of the coal and rock cutting state identification system in coal mine intelligent mining. Zhang M; Zhao L; Shi B Sci Rep; 2023 Mar; 13(1):3489. PubMed ID: 36859439 [TBL] [Abstract][Full Text] [Related]
10. Comprehensive study on the Python-based regression machine learning models for prediction of uniaxial compressive strength using multiple parameters in Charnockite rocks. Kochukrishnan S; Krishnamurthy P; D Y; Kaliappan N Sci Rep; 2024 Mar; 14(1):7360. PubMed ID: 38548837 [TBL] [Abstract][Full Text] [Related]
11. Analysis and prediction of compressive and split-tensile strength of secondary steel fiber reinforced concrete based on RBF fuzzy neural network model. Ling S; Chengbin D; Yafeng Y; Yongheng L PLoS One; 2024; 19(2):e0299149. PubMed ID: 38422088 [TBL] [Abstract][Full Text] [Related]
12. Effects of different empirical tunnel design approaches on rock mass behaviour during tunnel widening. Khan B; Jamil SM; Jafri TH; Akhtar K Heliyon; 2019 Dec; 5(12):e02944. PubMed ID: 31890942 [TBL] [Abstract][Full Text] [Related]
13. Mechanical Properties of GFRP Bolts and Its Application in Tunnel Face Reinforcement. Li H; Fu J; Chen B; Zhang X; Zhang Z; Lang L Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984071 [TBL] [Abstract][Full Text] [Related]
14. Damage and reliability analysis of double-arch tunnel without a middle pilot tunnel under blast load. Jian B; Tao T; Song S; Xie C; Tian X; Li G; Wan A Sci Rep; 2024 Apr; 14(1):9246. PubMed ID: 38649761 [TBL] [Abstract][Full Text] [Related]
15. Improving predictions of rock tunnel squeezing with ensemble Q-learning and online Markov chain. Fard HS; Parvin H; Mahmoudi M Sci Rep; 2024 Oct; 14(1):22885. PubMed ID: 39358373 [TBL] [Abstract][Full Text] [Related]
16. Prediction of rock burst intensity based on multi-source evidence weight and error-eliminating theory. Wu S; Yan Q; Tian S; Huang W Environ Sci Pollut Res Int; 2023 Jun; 30(29):74398-74408. PubMed ID: 37209337 [TBL] [Abstract][Full Text] [Related]
17. A hybrid neural network approach for classifying diabetic retinopathy subtypes. Xu H; Shao X; Fang D; Huang F Front Med (Lausanne); 2023; 10():1293019. PubMed ID: 38239623 [TBL] [Abstract][Full Text] [Related]
18. A novel hybrid face mask detection approach using Transformer and convolutional neural network models. Al-Sarrar HM; Al-Baity HH PeerJ Comput Sci; 2023; 9():e1265. PubMed ID: 37346550 [TBL] [Abstract][Full Text] [Related]
19. Using Artificial Neural Networks to Predict Influences of Heterogeneity on Rock Strength at Different Strain Rates. Jiang S; Sharafisafa M; Shen L Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34204967 [TBL] [Abstract][Full Text] [Related]
20. [High Precision Identification of Igneous Rock Lithology by Laser Induced Breakdown Spectroscopy]. Wang C; Zhang WG; Yan ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2463-8. PubMed ID: 26669148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]