These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Aggregated motion estimation for real-time MRI reconstruction. Li H; Haltmeier M; Zhang S; Frahm J; Munk A Magn Reson Med; 2014 Oct; 72(4):1039-48. PubMed ID: 24243541 [TBL] [Abstract][Full Text] [Related]
7. Calibrationless reconstruction of uniformly-undersampled multi-channel MR data with deep learning estimated ESPIRiT maps. Zhang J; Yi Z; Zhao Y; Xiao L; Hu J; Man C; Lau V; Su S; Chen F; Leong ATL; Wu EX Magn Reson Med; 2023 Jul; 90(1):280-294. PubMed ID: 37119514 [TBL] [Abstract][Full Text] [Related]
8. SPICER: Self-supervised learning for MRI with automatic coil sensitivity estimation and reconstruction. Hu Y; Gan W; Ying C; Wang T; Eldeniz C; Liu J; Chen Y; An H; Kamilov US Magn Reson Med; 2024 Sep; 92(3):1048-1063. PubMed ID: 38725383 [TBL] [Abstract][Full Text] [Related]
9. IMJENSE: Scan-Specific Implicit Representation for Joint Coil Sensitivity and Image Estimation in Parallel MRI. Feng R; Wu Q; Feng J; She H; Liu C; Zhang Y; Wei H IEEE Trans Med Imaging; 2024 Apr; 43(4):1539-1553. PubMed ID: 38090839 [TBL] [Abstract][Full Text] [Related]
10. Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: Database-free deep learning for fast imaging. Akçakaya M; Moeller S; Weingärtner S; Uğurbil K Magn Reson Med; 2019 Jan; 81(1):439-453. PubMed ID: 30277269 [TBL] [Abstract][Full Text] [Related]
11. Dual-domain accelerated MRI reconstruction using transformers with learning-based undersampling. Hong GQ; Wei YT; Morley WAW; Wan M; Mertens AJ; Su Y; Cheng HM Comput Med Imaging Graph; 2023 Jun; 106():102206. PubMed ID: 36857952 [TBL] [Abstract][Full Text] [Related]
12. An End-to-End Recurrent Neural Network for Radial MR Image Reconstruction. Oh C; Chung JY; Han Y Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236376 [TBL] [Abstract][Full Text] [Related]
13. Data-efficient Bayesian learning for radial dynamic MR reconstruction. Brahma S; Kolbitsch C; Martin J; Schaeffter T; Kofler A Med Phys; 2023 Nov; 50(11):6955-6977. PubMed ID: 37367947 [TBL] [Abstract][Full Text] [Related]
14. Rapid reconstruction of highly undersampled, non-Cartesian real-time cine k-space data using a perceptual complex neural network (PCNN). Shen D; Ghosh S; Haji-Valizadeh H; Pathrose A; Schiffers F; Lee DC; Freed BH; Markl M; Cossairt OS; Katsaggelos AK; Kim D NMR Biomed; 2021 Jan; 34(1):e4405. PubMed ID: 32875668 [TBL] [Abstract][Full Text] [Related]
15. Accelerated Cartesian cardiac T2 mapping based on a calibrationless locally low-rank tensor constraint. Gao J; Gong Y; Tang X; Chen H; Chen Z; Shen Y; Zhou Z; Emu Y; Aburas A; Jin W; Hua S; Hu C Quant Imaging Med Surg; 2024 Oct; 14(10):7654-7670. PubMed ID: 39429619 [TBL] [Abstract][Full Text] [Related]
16. Phase2Phase: Respiratory Motion-Resolved Reconstruction of Free-Breathing Magnetic Resonance Imaging Using Deep Learning Without a Ground Truth for Improved Liver Imaging. Eldeniz C; Gan W; Chen S; Fraum TJ; Ludwig DR; Yan Y; Liu J; Vahle T; Krishnamurthy U; Kamilov US; An H Invest Radiol; 2021 Dec; 56(12):809-819. PubMed ID: 34038064 [TBL] [Abstract][Full Text] [Related]
17. Magnetic resonance parameter mapping using model-guided self-supervised deep learning. Liu F; Kijowski R; El Fakhri G; Feng L Magn Reson Med; 2021 Jun; 85(6):3211-3226. PubMed ID: 33464652 [TBL] [Abstract][Full Text] [Related]