These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 39081331)
1. Fabrication and characterization of Ti-12Mo/xAl Yehia HM; El-Tantawy A; Elkady OA; Ghayad IM; Daoush WM Front Bioeng Biotechnol; 2024; 12():1412586. PubMed ID: 39081331 [No Abstract] [Full Text] [Related]
2. Development of Ti-10Nb alloy by powder metallurgy processing route for dental application. Kumar R; Gautam RK J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35338. PubMed ID: 37846459 [TBL] [Abstract][Full Text] [Related]
3. Mechanical properties, in vitro corrosion resistance and biocompatibility of metal injection molded Ti-12Mo alloy for dental applications. Xu W; Lu X; Wang LN; Shi ZM; Lv SM; Qian M; Qu XH J Mech Behav Biomed Mater; 2018 Dec; 88():534-547. PubMed ID: 30223215 [TBL] [Abstract][Full Text] [Related]
4. A Novel Approach by Spark Plasma Sintering to the Improvement of Mechanical Properties of Titanium Carbonitride-Reinforced Alumina Ceramics. Szutkowska M; Podsiadło M; Sadowski T; Figiel P; Boniecki M; Pietras D; Polczyk T Molecules; 2021 Mar; 26(5):. PubMed ID: 33802397 [TBL] [Abstract][Full Text] [Related]
5. Influence of Elemental Carbon (EC) Coating Covering nc-(Ti,Mo)C Particles on the Microstructure and Properties of Titanium Matrix Composites Prepared by Reactive Spark Plasma Sintering. Biedunkiewicz A; Figiel P; Garbiec D; Obrosov A; Pawlyta M; Biedunkiewicz W; Pruss P; Rokosz K; Wróbel R; Raaen S; Weiß S; Bokov D Materials (Basel); 2021 Jan; 14(1):. PubMed ID: 33466504 [TBL] [Abstract][Full Text] [Related]
6. Mechanical properties of ceramic composites based on ZrO Santos CD; Coutinho IF; Amarante JEV; Alves MFRP; Coutinho MM; Moreira da Silva CR J Mech Behav Biomed Mater; 2021 Apr; 116():104372. PubMed ID: 33540326 [TBL] [Abstract][Full Text] [Related]
8. Impact of scandium on mechanical properties, corrosion behavior, friction and wear performance, and cytotoxicity of a β-type Ti-24Nb-38Zr-2Mo alloy for orthopedic applications. Tong X; Sun Q; Zhang D; Wang K; Dai Y; Shi Z; Li Y; Dargusch M; Huang S; Ma J; Wen C; Lin J Acta Biomater; 2021 Oct; 134():791-803. PubMed ID: 34332105 [TBL] [Abstract][Full Text] [Related]
9. Microstructure and Mechanical Properties of Graphene Oxide-Reinforced Titanium Matrix Composites Synthesized by Hot-Pressed Sintering. Liu J; Hu N; Liu X; Liu Y; Lv X; Wei L; Zheng S Nanoscale Res Lett; 2019 Mar; 14(1):114. PubMed ID: 30927118 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of alumina-based metal nanocomposites by pressureless sintering and their mechanical properties. Oh ST; Lee SI J Nanosci Nanotechnol; 2010 Jan; 10(1):366-9. PubMed ID: 20352863 [TBL] [Abstract][Full Text] [Related]
11. Pulse Plasma Sintering of NiAl-Al Konopka K; Zygmuntowicz J; Krasnowski M; Cymerman K; Wachowski M; Piotrkiewicz P Materials (Basel); 2022 Jan; 15(2):. PubMed ID: 35057124 [TBL] [Abstract][Full Text] [Related]
12. Microstructures, mechanical and corrosion properties of graphene nanoplatelet-reinforced zinc matrix composites for implant applications. Kabir H; Munir K; Wen C; Li Y Acta Biomater; 2023 Feb; 157():701-719. PubMed ID: 36476647 [TBL] [Abstract][Full Text] [Related]
13. Tribological behavior study on Ti-Nb-Sn/hydroxyapatite composites in simulated body fluid solution. Chen Y; Wang X; Xu L; Liu Z; Kee do W J Mech Behav Biomed Mater; 2012 Jun; 10():97-107. PubMed ID: 22520422 [TBL] [Abstract][Full Text] [Related]
14. Influence of Homogenizing Methodology on Mechanical and Tribological Performance of Powder Metallurgy Processed Titanium Composites Reinforced by Graphene Nanoplatelets. Mahmood S; Iqbal A; Rafi-Ud-Din ; Wadood A; Mateen A; Amin M; Yahia IS; Zahran HY Molecules; 2022 Apr; 27(9):. PubMed ID: 35566017 [TBL] [Abstract][Full Text] [Related]
15. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys. Chen M; Zhang E; Zhang L Mater Sci Eng C Mater Biol Appl; 2016 May; 62():350-60. PubMed ID: 26952433 [TBL] [Abstract][Full Text] [Related]
16. Microstructure and Mechanical Characterization of Novel Al Zygmuntowicz J; Konopka K; Krasnowski M; Piotrkiewicz P; Wachowski M; Żurowski R; Cymerman K; Kulikowski K; Sobiecki R Materials (Basel); 2023 Jun; 16(11):. PubMed ID: 37297271 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and characterization of TiNbZrMo medium-entropy bio-composites: Microstructure, mechanical properties, and in vitro degradation. Say Y J Biomed Mater Res B Appl Biomater; 2024 Jun; 112(6):e35415. PubMed ID: 38773744 [TBL] [Abstract][Full Text] [Related]
18. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications. Qiu KJ; Liu Y; Zhou FY; Wang BL; Li L; Zheng YF; Liu YH Acta Biomater; 2015 Mar; 15():254-65. PubMed ID: 25595472 [TBL] [Abstract][Full Text] [Related]
19. Micro-hydroxyapatite reinforced Ti-based composite with tailored characteristics to minimize stress-shielding impact in bio-implant applications. Kumar R; Agrawal A J Mech Behav Biomed Mater; 2023 Jun; 142():105852. PubMed ID: 37068431 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical corrosion and bioactivity of Ti-Nb-Sn-hydroxyapatite composites fabricated by pulse current activated sintering. Xiaopeng W; Fantao K; Biqing H; Yuyong C J Mech Behav Biomed Mater; 2017 Nov; 75():222-227. PubMed ID: 28756282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]