These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39081561)
1. Tuning Excitonic Properties of Monochalcogenides via Design of Janus Structures. B P Querne M; C Dias A; Janotti A; Da Silva JLF; Lima MP J Phys Chem C Nanomater Interfaces; 2024 Jul; 128(29):12164-12177. PubMed ID: 39081561 [TBL] [Abstract][Full Text] [Related]
3. Tuning the structural, electronic and dynamical properties of Janus M Eren I; Akgenc B Phys Chem Chem Phys; 2021 Sep; 23(37):21139-21147. PubMed ID: 34528046 [TBL] [Abstract][Full Text] [Related]
4. The coexistence of high piezoelectricity and superior optical absorption in Janus Bi Cao SH; Zhang T; Geng HY; Chen XR Phys Chem Chem Phys; 2024 Jan; 26(5):4629-4642. PubMed ID: 38251770 [TBL] [Abstract][Full Text] [Related]
5. Electronic structures and photovoltaic applications of vdW heterostructures based on Janus group-IV monochalcogenides: insights from first-principles calculations. Cheng K; Hu W; Guo X; Wu L; Guo S; Su Y Phys Chem Chem Phys; 2023 Feb; 25(7):5663-5672. PubMed ID: 36734472 [TBL] [Abstract][Full Text] [Related]
6. Rational design of 2D Janus Zhang H; Guégan F; Wang J; Frapper G Phys Chem Chem Phys; 2024 May; 26(20):14675-14683. PubMed ID: 38716510 [TBL] [Abstract][Full Text] [Related]
7. Anisotropic Rashba splitting in Pt-based Janus monolayers PtXY (X,Y = S, Se, or Te). Sino PAL; Feng LY; Villaos RAB; Cruzado HN; Huang ZQ; Hsu CH; Chuang FC Nanoscale Adv; 2021 Nov; 3(23):6608-6616. PubMed ID: 36132660 [TBL] [Abstract][Full Text] [Related]
8. Excitonic Dynamics in Janus MoSSe and WSSe Monolayers. Zheng T; Lin YC; Yu Y; Valencia-Acuna P; Puretzky AA; Torsi R; Liu C; Ivanov IN; Duscher G; Geohegan DB; Ni Z; Xiao K; Zhao H Nano Lett; 2021 Jan; 21(2):931-937. PubMed ID: 33405934 [TBL] [Abstract][Full Text] [Related]
9. Janus 2H-MXTe (M = Zr, Hf; X = S, Se) monolayers with outstanding thermoelectric properties and low lattice thermal conductivities. Lin YQ; Yang Q; Wang ZQ; Geng HY; Cheng Y Phys Chem Chem Phys; 2023 Nov; 25(45):31312-31325. PubMed ID: 37955953 [TBL] [Abstract][Full Text] [Related]
10. Thermochemical stability, and electronic and dielectric properties of Janus bismuth oxyhalide BiOX (X = Cl, Br, I) monolayers. Das T; Datta S Nanoscale Adv; 2020 Mar; 2(3):1090-1104. PubMed ID: 36133068 [TBL] [Abstract][Full Text] [Related]
11. Moderate direct band-gap energies and high carrier mobilities of Janus XWSiP Nguyen HT; Cuong NQ; Vi VTT; Hieu NN; Tran LPT Phys Chem Chem Phys; 2023 Aug; 25(32):21468-21478. PubMed ID: 37539527 [TBL] [Abstract][Full Text] [Related]
12. Classifying the Electronic and Optical Properties of Janus Monolayers. Riis-Jensen AC; Deilmann T; Olsen T; Thygesen KS ACS Nano; 2019 Nov; 13(11):13354-13364. PubMed ID: 31613091 [TBL] [Abstract][Full Text] [Related]
13. Room Temperature Bound Excitons and Strain-Tunable Carrier Mobilities in Janus Monolayer Transition-Metal Dichalcogenides. Hou B; Zhang Y; Zhang H; Shao H; Ma C; Zhang X; Chen Y; Xu K; Ni G; Zhu H J Phys Chem Lett; 2020 Apr; 11(8):3116-3128. PubMed ID: 32220211 [TBL] [Abstract][Full Text] [Related]
14. Excitonic and Environmental Screening Effects in Two-Dimensional Janus MSO (M = Ga, In). Yi ZJ; Ji R Inorg Chem; 2024 Aug; 63(32):14989-14997. PubMed ID: 39077763 [TBL] [Abstract][Full Text] [Related]
15. Novel Janus diamane C Shu H Phys Chem Chem Phys; 2021 Sep; 23(34):18951-18957. PubMed ID: 34612434 [TBL] [Abstract][Full Text] [Related]
16. Optoelectronic and solar cell applications of Janus monolayers and their van der Waals heterostructures. Idrees M; Din HU; Ali R; Rehman G; Hussain T; Nguyen CV; Ahmad I; Amin B Phys Chem Chem Phys; 2019 Aug; 21(34):18612-18621. PubMed ID: 31414085 [TBL] [Abstract][Full Text] [Related]
17. Comprehensive Study of Lithium Adsorption and Diffusion on Janus Mo/WXY (X, Y = S, Se, Te) Using First-Principles and Machine Learning Approaches. Chaney G; Ibrahim A; Ersan F; Çakır D; Ataca C ACS Appl Mater Interfaces; 2021 Aug; 13(30):36388-36406. PubMed ID: 34304560 [TBL] [Abstract][Full Text] [Related]
18. Symmetry-breaking induced large piezoelectricity in Janus tellurene materials. Chen Y; Liu J; Yu J; Guo Y; Sun Q Phys Chem Chem Phys; 2019 Jan; 21(3):1207-1216. PubMed ID: 30565590 [TBL] [Abstract][Full Text] [Related]
19. Structure-engineering the stability, electronic, optical and photocatalytic properties of hexagonal C Lin J; Zhang B; Zhang T; Chen X Phys Chem Chem Phys; 2023 May; 25(21):15052-15061. PubMed ID: 37218610 [TBL] [Abstract][Full Text] [Related]
20. Optical and thermoelectric properties of new Janus ZnMN Ali B; Idrees M; Alrebdi TA; Amin B; Alam Q Nanoscale Adv; 2024 Jan; 6(2):680-689. PubMed ID: 38235097 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]