These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 39082120)
1. Hyperlocal Air Pollution Mapping: A Scalable Transfer Learning LUR Approach for Mobile Monitoring. Yuan Z; Kerckhoffs J; Li H; Khan J; Hoek G; Vermeulen R Environ Sci Technol; 2024 Aug; 58(32):14372-14383. PubMed ID: 39082120 [TBL] [Abstract][Full Text] [Related]
2. A Knowledge Transfer Approach to Map Long-Term Concentrations of Hyperlocal Air Pollution from Short-Term Mobile Measurements. Yuan Z; Kerckhoffs J; Hoek G; Vermeulen R Environ Sci Technol; 2022 Oct; 56(19):13820-13828. PubMed ID: 36121846 [TBL] [Abstract][Full Text] [Related]
3. Integrating large-scale stationary and local mobile measurements to estimate hyperlocal long-term air pollution using transfer learning methods. Yuan Z; Kerckhoffs J; Shen Y; de Hoogh K; Hoek G; Vermeulen R Environ Res; 2023 Jul; 228():115836. PubMed ID: 37028540 [TBL] [Abstract][Full Text] [Related]
4. Robustness of intra urban land-use regression models for ultrafine particles and black carbon based on mobile monitoring. Kerckhoffs J; Hoek G; Vlaanderen J; van Nunen E; Messier K; Brunekreef B; Gulliver J; Vermeulen R Environ Res; 2017 Nov; 159():500-508. PubMed ID: 28866382 [TBL] [Abstract][Full Text] [Related]
5. Mixed-Effects Modeling Framework for Amsterdam and Copenhagen for Outdoor NO Kerckhoffs J; Khan J; Hoek G; Yuan Z; Ellermann T; Hertel O; Ketzel M; Jensen SS; Meliefste K; Vermeulen R Environ Sci Technol; 2022 Jun; 56(11):7174-7184. PubMed ID: 35262348 [TBL] [Abstract][Full Text] [Related]
6. Hyperlocal variation of nitrogen dioxide, black carbon, and ultrafine particles measured with Google Street View cars in Amsterdam and Copenhagen. Kerckhoffs J; Khan J; Hoek G; Yuan Z; Hertel O; Ketzel M; Jensen SS; Al Hasan F; Meliefste K; Vermeulen R Environ Int; 2022 Dec; 170():107575. PubMed ID: 36306551 [TBL] [Abstract][Full Text] [Related]
7. Comparison of Ultrafine Particle and Black Carbon Concentration Predictions from a Mobile and Short-Term Stationary Land-Use Regression Model. Kerckhoffs J; Hoek G; Messier KP; Brunekreef B; Meliefste K; Klompmaker JO; Vermeulen R Environ Sci Technol; 2016 Dec; 50(23):12894-12902. PubMed ID: 27809494 [TBL] [Abstract][Full Text] [Related]
8. A land use regression model of nitrogen dioxide and fine particulate matter in a complex urban core in Lanzhou, China. Jin L; Berman JD; Warren JL; Levy JI; Thurston G; Zhang Y; Xu X; Wang S; Zhang Y; Bell ML Environ Res; 2019 Oct; 177():108597. PubMed ID: 31401375 [TBL] [Abstract][Full Text] [Related]
9. Development of land use regression models for nitrogen dioxide, ultrafine particles, lung deposited surface area, and four other markers of particulate matter pollution in the Swiss SAPALDIA regions. Eeftens M; Meier R; Schindler C; Aguilera I; Phuleria H; Ineichen A; Davey M; Ducret-Stich R; Keidel D; Probst-Hensch N; Künzli N; Tsai MY Environ Health; 2016 Apr; 15():53. PubMed ID: 27089921 [TBL] [Abstract][Full Text] [Related]
10. High-resolution spatial and spatiotemporal modelling of air pollution using fixed site and mobile monitoring in a Canadian city. Clark SN; Kulka R; Buteau S; Lavigne E; Zhang JJY; Riel-Roberge C; Smargiassi A; Weichenthal S; Van Ryswyk K Environ Pollut; 2024 Sep; 356():124353. PubMed ID: 38866318 [TBL] [Abstract][Full Text] [Related]
11. Land use regression modelling of air pollution in high density high rise cities: A case study in Hong Kong. Lee M; Brauer M; Wong P; Tang R; Tsui TH; Choi C; Cheng W; Lai PC; Tian L; Thach TQ; Allen R; Barratt B Sci Total Environ; 2017 Aug; 592():306-315. PubMed ID: 28319717 [TBL] [Abstract][Full Text] [Related]
12. A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda. Coker ES; Amegah AK; Mwebaze E; Ssematimba J; Bainomugisha E Environ Res; 2021 Aug; 199():111352. PubMed ID: 34043968 [TBL] [Abstract][Full Text] [Related]
13. A land use regression model for estimating the NO2 concentration in Shanghai, China. Meng X; Chen L; Cai J; Zou B; Wu CF; Fu Q; Zhang Y; Liu Y; Kan H Environ Res; 2015 Feb; 137():308-15. PubMed ID: 25601733 [TBL] [Abstract][Full Text] [Related]
14. Evaluating heterogeneity in indoor and outdoor air pollution using land-use regression and constrained factor analysis. Levy JI; Clougherty JE; Baxter LK; Houseman EA; Paciorek CJ; Res Rep Health Eff Inst; 2010 Dec; (152):5-80; discussion 81-91. PubMed ID: 21409949 [TBL] [Abstract][Full Text] [Related]
15. Development of transferable neighborhood land use regression models for predicting intra-urban ambient nitrogen dioxide (NO Ma X; Gao J; Longley I; Zou B; Guo B; Xu X; Salmond J Environ Sci Pollut Res Int; 2022 Jun; 29(30):45903-45918. PubMed ID: 35150420 [TBL] [Abstract][Full Text] [Related]
16. Land use regression model for ultrafine particles in Amsterdam. Hoek G; Beelen R; Kos G; Dijkema M; van der Zee SC; Fischer PH; Brunekreef B Environ Sci Technol; 2011 Jan; 45(2):622-8. PubMed ID: 21158386 [TBL] [Abstract][Full Text] [Related]
17. Modelling nationwide spatial variation of ultrafine particles based on mobile monitoring. Kerckhoffs J; Hoek G; Gehring U; Vermeulen R Environ Int; 2021 Sep; 154():106569. PubMed ID: 33866060 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Spatial Modelling Approaches on PM Widya LK; Hsu CY; Lee HY; Jaelani LM; Lung SC; Su HJ; Wu CD Int J Environ Res Public Health; 2020 Nov; 17(23):. PubMed ID: 33260391 [TBL] [Abstract][Full Text] [Related]
20. Development and Evaluation of Spatio-Temporal Air Pollution Exposure Models and Their Combinations in the Greater London Area, UK. Dimakopoulou K; Samoli E; Analitis A; Schwartz J; Beevers S; Kitwiroon N; Beddows A; Barratt B; Rodopoulou S; Zafeiratou S; Gulliver J; Katsouyanni K Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564796 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]