These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 39082302)
1. Physics-informed scaling laws for the performance of pitching foils in schooling configurations. Gungor A; Khalid MSU; Hemmati A J R Soc Interface; 2024 Jul; 21(216):20240157. PubMed ID: 39082302 [TBL] [Abstract][Full Text] [Related]
2. Rolling and pitching oscillating foil propulsion in ground effect. Perkins M; Elles D; Badlissi G; Mivehchi A; Dahl J; Licht S Bioinspir Biomim; 2017 Nov; 13(1):016003. PubMed ID: 28869422 [TBL] [Abstract][Full Text] [Related]
3. Hydrodynamic advantages of in-line schooling. Saadat M; Berlinger F; Sheshmani A; Nagpal R; Lauder GV; Haj-Hariri H Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33513591 [TBL] [Abstract][Full Text] [Related]
4. Wake symmetry impacts the performance of tandem hydrofoils during in-phase and out-of-phase oscillations differently. Gungor A; Hemmati A Phys Rev E; 2020 Oct; 102(4-1):043104. PubMed ID: 33212661 [TBL] [Abstract][Full Text] [Related]
5. Implications of changing synchronization in propulsive performance of side-by-side pitching foils. Gungor A; Hemmati A Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33571986 [TBL] [Abstract][Full Text] [Related]
6. Tailoring the bending pattern of non-uniformly flexible pitching hydrofoils enhances propulsive efficiency. Han T; Mivehchi A; Kurt M; Moored KW Bioinspir Biomim; 2022 Sep; 17(6):. PubMed ID: 36065966 [TBL] [Abstract][Full Text] [Related]
7. Propulsive performance of biologically inspired flapping foils at high Reynolds numbers. Techet AH J Exp Biol; 2008 Jan; 211(Pt 2):274-9. PubMed ID: 18165255 [TBL] [Abstract][Full Text] [Related]
8. Improved swimming performance in schooling fish via leading-edge vortex enhancement. Seo JH; Mittal R Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36261046 [TBL] [Abstract][Full Text] [Related]
9. On the noise generation and unsteady performance of combined heaving and pitching foils. Wagenhoffer N; Moored KW; Jaworski JW Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37187175 [TBL] [Abstract][Full Text] [Related]
10. Three-dimensional scaling laws of cetacean propulsion characterize the hydrodynamic interplay of flukes' shape and kinematics. Ayancik F; Fish FE; Moored KW J R Soc Interface; 2020 Feb; 17(163):20190655. PubMed ID: 32093541 [TBL] [Abstract][Full Text] [Related]
11. Wake and aeroelasticity of a flexible pitching foil. D'Adamo J; Collaud M; Sosa R; Godoy-Diana R Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35523157 [TBL] [Abstract][Full Text] [Related]
12. Unsupervised clustering and performance prediction of vortex wakes from bio-inspired propulsors. Calvet AG; Dave M; Franck JA Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33984842 [TBL] [Abstract][Full Text] [Related]
13. Real-time parametric estimation of periodic wake-foil interactions using bioinspired pressure sensing and machine learning. Xu WH; Xu GD; Shan L Bioinspir Biomim; 2022 Mar; 17(2):. PubMed ID: 34996050 [TBL] [Abstract][Full Text] [Related]
14. Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model. Lucas KN; Thornycroft PJ; Gemmell BJ; Colin SP; Costello JH; Lauder GV Bioinspir Biomim; 2015 Oct; 10(5):056019. PubMed ID: 26447541 [TBL] [Abstract][Full Text] [Related]
15. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion. Shelton RM; Thornycroft PJ; Lauder GV J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649 [TBL] [Abstract][Full Text] [Related]
16. Hydrodynamic stress maps on the surface of a flexible fin-like foil. Dagenais P; Aegerter CM PLoS One; 2021; 16(1):e0244674. PubMed ID: 33434237 [TBL] [Abstract][Full Text] [Related]
17. Flow Interactions Between Low Aspect Ratio Hydrofoils in In-line and Staggered Arrangements. Kurt M; Eslam Panah A; Moored KW Biomimetics (Basel); 2020 Mar; 5(2):. PubMed ID: 32244490 [TBL] [Abstract][Full Text] [Related]
18. Tuna locomotion: a computational hydrodynamic analysis of finlet function. Wang J; Wainwright DK; Lindengren RE; Lauder GV; Dong H J R Soc Interface; 2020 Apr; 17(165):20190590. PubMed ID: 32264740 [TBL] [Abstract][Full Text] [Related]
19. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion. Feilich KL; Lauder GV Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846 [TBL] [Abstract][Full Text] [Related]
20. Effects of non-sinusoidal pitching motion on the propulsion performance of an oscillating foil. Qi Z; Zhai J; Li G; Peng J PLoS One; 2019; 14(7):e0218832. PubMed ID: 31260479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]