These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 39082412)
1. N-Doped Ti Zhang Z; Wang Y; Sun J; Dang L; Li Q; He X; Liu Z; Lei Z Small; 2024 Jul; ():e2402636. PubMed ID: 39082412 [TBL] [Abstract][Full Text] [Related]
2. Highly Reversible and Dendrite-Free Zinc Anodes Enabled by PEDOT Nanowire Interfacial Layers for Aqueous Zinc-Ion Batteries. Wang Y; Zhang Z; Wang L; Wang J; Meng W; Sun J; Li Q; He X; Liu Z; Lei Z ACS Appl Mater Interfaces; 2024 Aug; 16(32):43026-43037. PubMed ID: 39093713 [TBL] [Abstract][Full Text] [Related]
3. Polyoxometalate solution passivation enabling dendrite-free and high-performance zinc anodes in aqueous zinc-ion batteries. Sui BB; Sha L; Bao QP; Wang PF; Gong Z; Zhou MD; Shi FN; Zhu K J Colloid Interface Sci; 2024 Sep; 669():886-895. PubMed ID: 38749227 [TBL] [Abstract][Full Text] [Related]
4. Regulated Zn Plating and Stripping by a Multifunctional Polymer-Alloy Interphase Layer for Stable Zn Metal Anode. Duan J; Dong J; Cao R; Yang H; Fang K; Liu Y; Shen Z; Li F; Liu R; Li H; Chen C Adv Sci (Weinh); 2023 Oct; 10(29):e2303343. PubMed ID: 37574263 [TBL] [Abstract][Full Text] [Related]
5. Nucleophilic Interfacial Layer Enables Stable Zn Anodes for Aqueous Zn Batteries. Xu Y; Zheng X; Sun J; Wang W; Wang M; Yuan Y; Chuai M; Chen N; Hu H; Chen W Nano Lett; 2022 Apr; 22(8):3298-3306. PubMed ID: 35385667 [TBL] [Abstract][Full Text] [Related]
6. Constructing a 3D Zinc Anode Exposing the Zn(002) Plane for Ultralong Life Zinc-Ion Batteries. Chen X; Zhai Z; Yu T; Liang X; Huang R; Wang F; Yin S Small; 2024 Aug; 20(35):e2401386. PubMed ID: 38659174 [TBL] [Abstract][Full Text] [Related]
7. Constructing Highly Stable Zinc Metal Anodes via Induced Zn(002) Growth. Hu S; Tao H; Ma H; Yan B; Li Y; Zhang L; Yang X ACS Appl Mater Interfaces; 2024 Apr; 16(15):18949-18958. PubMed ID: 38569078 [TBL] [Abstract][Full Text] [Related]
8. Inorganic Hybrid Interfacial Layer for a Stable Zinc Metal Anode. Hou Z; Ma H; Tao H; Yang XL ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38037832 [TBL] [Abstract][Full Text] [Related]
9. Interfacial Reconstruction for Regulating Zn Yang C; Zhang X; Cao J; Zhang D; Kidkhunthod P; Wannapaiboon S; Qin J ACS Appl Mater Interfaces; 2023 Jun; 15(22):26718-26727. PubMed ID: 37218675 [TBL] [Abstract][Full Text] [Related]
10. A Facile Chemical Method Enabling Uniform Zn Deposition for Improved Aqueous Zn-Ion Batteries. Liu C; Lu Q; Omar A; Mikhailova D Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803524 [TBL] [Abstract][Full Text] [Related]
11. Boosting uniform nucleation and suppressing hydrogen evolution with an in-situ formed zinc hyaluronate protective film on zinc anodes. Li T; Yan S; Dong H; Zheng Y; Ming K; Tong Z; Li G; Li H; Li W; Wang Q; Liu J; Wang Y J Colloid Interface Sci; 2023 Dec; 651():959-967. PubMed ID: 37579670 [TBL] [Abstract][Full Text] [Related]
12. Ultrathin Zincophilic Interphase Regulated Electric Double Layer Enabling Highly Stable Aqueous Zinc-Ion Batteries. Chen Y; Deng Z; Sun Y; Li Y; Zhang H; Li G; Zeng H; Wang X Nanomicro Lett; 2024 Jan; 16(1):96. PubMed ID: 38270675 [TBL] [Abstract][Full Text] [Related]
13. Multicomponent Copper-Zinc Alloy Layer Enabling Ultra-Stable Zinc Metal Anode of Aqueous Zn-ion Battery. Li B; Yang K; Ma J; Shi P; Chen L; Chen C; Hong X; Cheng X; Tang MC; He YB; Kang F Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202212587. PubMed ID: 36169381 [TBL] [Abstract][Full Text] [Related]
14. Rational Design of Sulfur-Doped Three-Dimensional Ti An Y; Tian Y; Liu C; Xiong S; Feng J; Qian Y ACS Nano; 2021 Sep; 15(9):15259-15273. PubMed ID: 34435782 [TBL] [Abstract][Full Text] [Related]
15. Dendrite-free Zn anodes enabled by functional nitrogen-doped carbon protective layers for aqueous zinc-ion batteries. Wu C; Xie K; Ren K; Yang S; Wang Q Dalton Trans; 2020 Dec; 49(48):17629-17634. PubMed ID: 33283814 [TBL] [Abstract][Full Text] [Related]
16. Inert Group-Containing Electrolyte Additive Enabling Stable Aqueous Zinc-Ion Batteries. Liang H; Wu J; Xu J; Li J; Wang J; Cai J; Long Y; Yu X; Yang Z Small; 2024 Apr; 20(16):e2307322. PubMed ID: 38032169 [TBL] [Abstract][Full Text] [Related]
17. Thickness-Controlled Synthesis of Compact and Uniform MOF Protective Layer for Zinc Anode to Achieve 85% Zinc Utilization. Xiang Y; Zhong Y; Tan P; Zhou L; Yin G; Pan H; Li X; Jiang Y; Xu M; Zhang X Small; 2023 Oct; 19(43):e2302161. PubMed ID: 37376836 [TBL] [Abstract][Full Text] [Related]
18. Regulating the MXene-Zinc Interfacial Structure toward a Highly Revisable Metal Anode of Zinc-Air Batteries. Yang D; Li J; Liu C; Ge J; Xing W; Zhu J ACS Appl Mater Interfaces; 2023 Mar; 15(8):10651-10659. PubMed ID: 36800313 [TBL] [Abstract][Full Text] [Related]
19. Synergistically Stabilizing Zinc Anodes by Molybdenum Dioxide Coating and Tween 80 Electrolyte Additive for High-Performance Aqueous Zinc-Ion Batteries. Thieu NA; Li W; Chen X; Li Q; Wang Q; Velayutham M; Grady ZM; Li X; Li W; Khramtsov VV; Reed DM; Li X; Liu X ACS Appl Mater Interfaces; 2023 Dec; 15(48):55570-55586. PubMed ID: 38058105 [TBL] [Abstract][Full Text] [Related]
20. Nitroxyl radical triggered the construction of a molecular protective layer for achieving durable Zn metal anodes. Ma X; Yu H; Yan C; Chen Q; Wang Z; Chen Y; Chen G; Lv C J Colloid Interface Sci; 2024 Jun; 664():539-548. PubMed ID: 38484522 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]