These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39082829)
21. Deciphering the In Situ Reconstruction of Metal Phosphide/Nitride Dual Heterostructures for Robust Alkaline Hydrogen Evolution Above 3 A cm Liao L; Zhou Q; Liu F; Ma Y; Cheng C; Huang H; Yu F; Long R; Zhou H Small; 2024 Jul; 20(29):e2311289. PubMed ID: 38349036 [TBL] [Abstract][Full Text] [Related]
22. Self-supported amorphous phosphide catalytic electrodes for electrochemical hydrogen production coupling with methanol upgrading. Chang J; Wang W; Wu D; Xu F; Jiang K; Guo Y; Gao Z J Colloid Interface Sci; 2023 Oct; 648():259-269. PubMed ID: 37301150 [TBL] [Abstract][Full Text] [Related]
23. Energy-efficient hydrogen production over a high-performance bifunctional NiMo-based nanorods electrode. Li RQ; Li S; Lu M; Shi Y; Qu K; Zhu Y J Colloid Interface Sci; 2020 Jul; 571():48-54. PubMed ID: 32179308 [TBL] [Abstract][Full Text] [Related]
24. Hydrogen and Potassium Acetate Co-Production from Electrochemical Reforming of Ethanol at Ultrathin Cobalt Sulfide Nanosheets on Nickel Foam. Ding Y; Xue Q; Hong QL; Li FM; Jiang YC; Li SN; Chen Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4026-4033. PubMed ID: 33459016 [TBL] [Abstract][Full Text] [Related]
25. Bifunctional Al-Doped Cobalt Ferrocyanide Nanocube Array for Energy-Saving Hydrogen Production via Urea Electrolysis. Gao X; Gao M; Yu X; Jin X; Ni G; Peng J Molecules; 2023 Oct; 28(20):. PubMed ID: 37894626 [TBL] [Abstract][Full Text] [Related]
26. Recent progress in energy-saving electrocatalytic hydrogen production Gao T; An Q; Tang X; Yue Q; Zhang Y; Li B; Li P; Jin Z Phys Chem Chem Phys; 2024 Jul; 26(29):19606-19624. PubMed ID: 39011574 [TBL] [Abstract][Full Text] [Related]
27. Heterointerface-Rich Ni Wang H; Zhan W; Jiang S; Deng K; Wang Z; Xu Y; Yu H; Wang L ChemSusChem; 2024 Sep; 17(18):e202400624. PubMed ID: 38616165 [TBL] [Abstract][Full Text] [Related]
28. Enhanced hydrogen production via urea electrolysis over Ni-NiO electrodeposited on Ti mesh. Wang Y; Zhu M; Xie T; Liu S; Wang J Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37820612 [TBL] [Abstract][Full Text] [Related]
29. PEO-PPO-PEO induced holey NiFe-LDH nanosheets on Ni foam for efficient overall water-splitting and urea electrolysis. Chen L; Wang H; Tan L; Qiao D; Liu X; Wen Y; Hou W; Zhan T J Colloid Interface Sci; 2022 Jul; 618():141-148. PubMed ID: 35334362 [TBL] [Abstract][Full Text] [Related]
30. NiFeP nanosheets for efficient and durable hydrazine-assisted electrolytic hydrogen production. Hou J; Mei K; Jiang T; Yu X; Wu M Dalton Trans; 2024 Mar; 53(10):4574-4579. PubMed ID: 38349199 [TBL] [Abstract][Full Text] [Related]
32. Energy-Saving Electrochemical Hydrogen Production Coupled with Biomass-Derived Isobutanol Upgrading. Du R; Zhao S; Zhang K; Chen Y; Cheng Y ChemSusChem; 2024 Jul; 17(13):e202301739. PubMed ID: 38389167 [TBL] [Abstract][Full Text] [Related]
33. High Valence State Sites as Favorable Reductive Centers for High-Current-Density Water Splitting. Li S; Liu Y; Feng K; Li C; Xu J; Lu C; Lin H; Feng Y; Ma D; Zhong J Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202308670. PubMed ID: 37551119 [TBL] [Abstract][Full Text] [Related]
34. Crystalline Copper Phosphide Nanosheets as an Efficient Janus Catalyst for Overall Water Splitting. Han A; Zhang H; Yuan R; Ji H; Du P ACS Appl Mater Interfaces; 2017 Jan; 9(3):2240-2248. PubMed ID: 28008761 [TBL] [Abstract][Full Text] [Related]
35. Phosphorus-Modified Amorphous High-Entropy CoFeNiCrMn Compound as High-Performance Electrocatalyst for Hydrazine-Assisted Water Electrolysis. Li K; He J; Guan X; Tong Y; Ye Y; Chen L; Chen P Small; 2023 Oct; 19(42):e2302130. PubMed ID: 37345550 [TBL] [Abstract][Full Text] [Related]
36. Urea-oxidation-assisted electrochemical water splitting for hydrogen production on a bifunctional heterostructure transition metal phosphides combining metal-organic frameworks. Chen C; Jin L; Hu L; Zhang T; He J; Gu P; Xu Q; Lu J J Colloid Interface Sci; 2022 Dec; 628(Pt B):1008-1018. PubMed ID: 36049277 [TBL] [Abstract][Full Text] [Related]
37. Synergistic Promotion of Large-Current Water Splitting through Interfacial Engineering of Hierarchically Structured CoP-FeP Nanosheets with Rich P Vacancies. Qi L; Huang Z; Liao M; Wang L; Wang L; Gao M; Taylor Isimjan T; Yang X Chemistry; 2023 Oct; 29(56):e202301521. PubMed ID: 37435858 [TBL] [Abstract][Full Text] [Related]
38. Heterostructured Ni Liu J; Wang Y; Liao Y; Wu C; Yan Y; Xie H; Chen Y ACS Appl Mater Interfaces; 2021 Jun; 13(23):26948-26959. PubMed ID: 34078074 [TBL] [Abstract][Full Text] [Related]
39. Anodic hydrazine electrooxidation boosted overall water electrolysis by bifunctional porous nickel phosphide nanotubes on nickel foam. Wang TJ; Xu GR; Sun HY; Huang H; Li FM; Chen P; Chen Y Nanoscale; 2020 Jun; 12(21):11526-11535. PubMed ID: 32432270 [TBL] [Abstract][Full Text] [Related]
40. Cobalt-metalloid alloys for electrochemical oxidation of 5-hydroxymethylfurfural as an alternative anode reaction in lieu of oxygen evolution during water splitting. Weidner J; Barwe S; Sliozberg K; Piontek S; Masa J; Apfel UP; Schuhmann W Beilstein J Org Chem; 2018; 14():1436-1445. PubMed ID: 29977407 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]