These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 39083515)

  • 1. Zbtb11 interacts with Otx2 and patterns the anterior neuroectoderm in Xenopus.
    Satou-Kobayashi Y; Takahashi S; Haramoto Y; Asashima M; Taira M
    PLoS One; 2024; 19(7):e0293852. PubMed ID: 39083515
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation states change Otx2 activity for cell proliferation and patterning in the
    Satou Y; Minami K; Hosono E; Okada H; Yasuoka Y; Shibano T; Tanaka T; Taira M
    Development; 2018 Mar; 145(5):. PubMed ID: 29440302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gbx2 interacts with Otx2 and patterns the anterior-posterior axis during gastrulation in Xenopus.
    Tour E; Pillemer G; Gruenbaum Y; Fainsod A
    Mech Dev; 2002 Mar; 112(1-2):141-51. PubMed ID: 11850185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regionalisation of anterior neuroectoderm and its competence in responding to forebrain and midbrain inducing activities depend on mutual antagonism between OTX2 and GBX2.
    Martinez-Barbera JP; Signore M; Boyl PP; Puelles E; Acampora D; Gogoi R; Schubert F; Lumsden A; Simeone A
    Development; 2001 Dec; 128(23):4789-800. PubMed ID: 11731459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ras-dva, a member of novel family of small GTPases, is required for the anterior ectoderm patterning in the Xenopus laevis embryo.
    Tereshina MB; Zaraisky AG; Novoselov VV
    Development; 2006 Feb; 133(3):485-94. PubMed ID: 16410411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification and evolution of molecular domains involved in differentiating the cement gland-promoting activity of Otx proteins in Xenopus laevis.
    Mancini P; Castelli M; Vignali R
    Mech Dev; 2013; 130(11-12):628-39. PubMed ID: 24056062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Otx2 expression in anterior neuroectoderm and forebrain/midbrain is directed by more than six enhancers.
    Kurokawa D; Ohmura T; Sakurai Y; Inoue K; Suda Y; Aizawa S
    Dev Biol; 2014 Mar; 387(2):203-13. PubMed ID: 24457099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Otx2 and Gbx2 are required for refinement and not induction of mid-hindbrain gene expression.
    Li JY; Joyner AL
    Development; 2001 Dec; 128(24):4979-91. PubMed ID: 11748135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Otx2 can activate the isthmic organizer genetic network in the Xenopus embryo.
    Tour E; Pillemer G; Gruenbaum Y; Fainsod A
    Mech Dev; 2002 Jan; 110(1-2):3-13. PubMed ID: 11744364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The homeoprotein Xiro1 is required for midbrain-hindbrain boundary formation.
    Glavic A; Gómez-Skarmeta JL; Mayor R
    Development; 2002 Apr; 129(7):1609-21. PubMed ID: 11923198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos.
    Kumar S; Umair Z; Kumar V; Kumar S; Lee U; Kim J
    Sci Rep; 2020 Oct; 10(1):16780. PubMed ID: 33033315
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal.
    Rhinn M; Lun K; Ahrendt R; Geffarth M; Brand M
    Neural Dev; 2009 Apr; 4():12. PubMed ID: 19341460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sall1 and sall4 repress pou5f3 family expression to allow neural patterning, differentiation, and morphogenesis in Xenopus laevis.
    Exner CRT; Kim AY; Mardjuki SM; Harland RM
    Dev Biol; 2017 May; 425(1):33-43. PubMed ID: 28322736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antagonistic interaction between IGF and Wnt/JNK signaling in convergent extension in Xenopus embryo.
    Carron C; Bourdelas A; Li HY; Boucaut JC; Shi DL
    Mech Dev; 2005 Nov; 122(11):1234-47. PubMed ID: 16169711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolutionary alteration in anterior patterning: otx2 expression in the direct developing frog Eleutherodactylus coqui.
    Fang H; Elinson RP
    Dev Biol; 1999 Jan; 205(2):233-9. PubMed ID: 9917359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xnr3 affects brain patterning via cell migration in the neural-epidermal tissue boundary during early Xenopus embryogenesis.
    Morita M; Yamashita S; Matsukawa S; Haramoto Y; Takahashi S; Asashima M; Michiue T
    Int J Dev Biol; 2013; 57(9-10):779-86. PubMed ID: 24307296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional equivalency between Otx2 and Otx1 in development of the rostral head.
    Suda Y; Nakabayashi J; Matsuo I; Aizawa S
    Development; 1999 Feb; 126(4):743-57. PubMed ID: 9895322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convergence of a head-field selector Otx2 and Notch signaling: a mechanism for lens specification.
    Ogino H; Fisher M; Grainger RM
    Development; 2008 Jan; 135(2):249-58. PubMed ID: 18057103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of Otx paralogue usages in early patterning of the vertebrate head.
    Suda Y; Kurokawa D; Takeuchi M; Kajikawa E; Kuratani S; Amemiya C; Aizawa S
    Dev Biol; 2009 Jan; 325(1):282-95. PubMed ID: 18848537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutual repression between Gbx2 and Otx2 in sensory placodes reveals a general mechanism for ectodermal patterning.
    Steventon B; Mayor R; Streit A
    Dev Biol; 2012 Jul; 367(1):55-65. PubMed ID: 22564795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.