These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 39083655)
21. Fate, uptake, and distribution of nanoencapsulated pesticides in soil-earthworm systems and implications for environmental risk assessment. Mohd Firdaus MA; Agatz A; Hodson ME; Al-Khazrajy OSA; Boxall ABA Environ Toxicol Chem; 2018 May; 37(5):1420-1429. PubMed ID: 29341233 [TBL] [Abstract][Full Text] [Related]
22. Solid-phase microextraction to predict bioavailability and accumulation of organic micropollutants in terrestrial organisms after exposure to a field-contaminated soil. van der Wal L; Jager T; Fleuren RH; Barendregt A; Sinnige TL; Van Gestel CA; Hermens JL Environ Sci Technol; 2004 Sep; 38(18):4842-8. PubMed ID: 15487794 [TBL] [Abstract][Full Text] [Related]
23. The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders. Liu YJ; Zaprasis A; Liu SJ; Drake HL; Horn MA ISME J; 2011 Mar; 5(3):473-85. PubMed ID: 20740027 [TBL] [Abstract][Full Text] [Related]
24. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
25. Bioaccumulation and the soil factors affecting the uptake of arsenic in earthworm, Eisenia fetida. Lee BT; Lee SW; Kim KR; Kim KW Environ Sci Pollut Res Int; 2013 Dec; 20(12):8326-33. PubMed ID: 24026203 [TBL] [Abstract][Full Text] [Related]
26. Bioaccumulation and enantioselectivity of type I and type II pyrethroid pesticides in earthworm. Chang J; Wang Y; Wang H; Li J; Xu P Chemosphere; 2016 Feb; 144():1351-7. PubMed ID: 26490429 [TBL] [Abstract][Full Text] [Related]
27. Earthworms and their cutaneous excreta can modify the virulence and reproductive capability of entomopathogenic nematodes and fungi. Chelkha M; Blanco-Pérez R; Vicente-Díez I; Bueno-Pallero FÁ; Amghar S; El Harti A; Campos-Herrera R J Invertebr Pathol; 2021 Sep; 184():107620. PubMed ID: 34004164 [TBL] [Abstract][Full Text] [Related]
28. Uptake kinetics of four hydrophobic organic pollutants in the earthworm Eisenia andrei in aged laboratory-contaminated natural soils. Svobodová M; Hofman J; Bielská L; Šmídová K Ecotoxicol Environ Saf; 2020 Apr; 192():110317. PubMed ID: 32061977 [TBL] [Abstract][Full Text] [Related]
29. Soil organic matter content effects on dermal pesticide bioconcentration in American toads (Bufo americanus). Van Meter RJ; Glinski DA; Henderson WM; Purucker ST Environ Toxicol Chem; 2016 Nov; 35(11):2734-2741. PubMed ID: 27028289 [TBL] [Abstract][Full Text] [Related]
30. Uptake and toxicity of spiked nickel to earthworm Eisenia fetida in a range of Chinese soils. Yan Z; Wang B; Xie D; Zhou Y; Guo G; Xu M; Bai L; Hou H; Li F Environ Toxicol Chem; 2011 Nov; 30(11):2586-93. PubMed ID: 21898557 [TBL] [Abstract][Full Text] [Related]
31. A review of studies performed to assess metal uptake by earthworms. Nahmani J; Hodson ME; Black S Environ Pollut; 2007 Jan; 145(2):402-24. PubMed ID: 16815606 [TBL] [Abstract][Full Text] [Related]
32. Earthworm tolerance to residual agricultural pesticide contamination: field and experimental assessment of detoxification capabilities. Givaudan N; Binet F; Le Bot B; Wiegand C Environ Pollut; 2014 Sep; 192():9-18. PubMed ID: 24874794 [TBL] [Abstract][Full Text] [Related]
33. Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. Bustos V; Mondaca P; Verdejo J; Sauvé S; Gaete H; Celis-Diez JL; Neaman A Ecotoxicol Environ Saf; 2015 Dec; 122():448-54. PubMed ID: 26398238 [TBL] [Abstract][Full Text] [Related]
34. Effects of soil properties on copper toxicity to earthworm Eisenia fetida in 15 Chinese soils. Duan X; Xu M; Zhou Y; Yan Z; Du Y; Zhang L; Zhang C; Bai L; Nie J; Chen G; Li F Chemosphere; 2016 Feb; 145():185-92. PubMed ID: 26688255 [TBL] [Abstract][Full Text] [Related]
35. Earthworm-induced carboxylesterase activity in soil: Assessing the potential for detoxification and monitoring organophosphorus pesticides. Sanchez-Hernandez JC; Notario del Pino J; Domínguez J Ecotoxicol Environ Saf; 2015 Dec; 122():303-12. PubMed ID: 26300118 [TBL] [Abstract][Full Text] [Related]
36. Predicting copper toxicity to different earthworm species using a multicomponent Freundlich model. Qiu H; Vijver MG; He E; Peijnenburg WJ Environ Sci Technol; 2013 May; 47(9):4796-803. PubMed ID: 23548049 [TBL] [Abstract][Full Text] [Related]
37. Soil enzyme dynamics in chlorpyrifos-treated soils under the influence of earthworms. Sanchez-Hernandez JC; Notario Del Pino J; Capowiez Y; Mazzia C; Rault M Sci Total Environ; 2018 Jan; 612():1407-1416. PubMed ID: 28898947 [TBL] [Abstract][Full Text] [Related]
38. Effect of species differences, pollutant concentration, and residence time in soil on the bioaccumulation of 2,2-bis (p-chlorophenyl)-1,1-dichloroethylene by three earthworm species. Kelsey JW; Colino A; White JC Environ Toxicol Chem; 2005 Mar; 24(3):703-8. PubMed ID: 15779772 [TBL] [Abstract][Full Text] [Related]
39. Stereoselective bioaccumulation and degradation of chiral pesticide hexythiazox in earthworm-soil microcosm. Song N; Zhuang J; Zhang H; Qian M; Wu H; Sun N Ecotoxicol Environ Saf; 2024 Mar; 273():116148. PubMed ID: 38422791 [TBL] [Abstract][Full Text] [Related]
40. Influence of soil properties on molybdenum uptake and elimination kinetics in the earthworm Eisenia andrei. Díez-Ortiz M; Giska I; Groot M; Borgman EM; Van Gestel CA Chemosphere; 2010 Aug; 80(9):1036-43. PubMed ID: 20674662 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]