These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 39083950)

  • 21. Chromatin organization by an interplay of loop extrusion and compartmental segregation.
    Nuebler J; Fudenberg G; Imakaev M; Abdennur N; Mirny LA
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6697-E6706. PubMed ID: 29967174
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Complexes at Euchromatin, Heterochromatin and Centromeric Chromatin.
    Morrison O; Thakur J
    Int J Mol Sci; 2021 Jun; 22(13):. PubMed ID: 34203193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent evidence that TADs and chromatin loops are dynamic structures.
    Hansen AS; Cattoglio C; Darzacq X; Tjian R
    Nucleus; 2018 Jan; 9(1):20-32. PubMed ID: 29077530
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chromatin Hyperacetylation Impacts Chromosome Folding by Forming a Nuclear Subcompartment.
    Rosencrance CD; Ammouri HN; Yu Q; Ge T; Rendleman EJ; Marshall SA; Eagen KP
    Mol Cell; 2020 Apr; 78(1):112-126.e12. PubMed ID: 32243828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin.
    Bancaud A; Huet S; Daigle N; Mozziconacci J; Beaudouin J; Ellenberg J
    EMBO J; 2009 Dec; 28(24):3785-98. PubMed ID: 19927119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Topologically associating domains and their long-range contacts are established during early G1 coincident with the establishment of the replication-timing program.
    Dileep V; Ay F; Sima J; Vera DL; Noble WS; Gilbert DM
    Genome Res; 2015 Aug; 25(8):1104-13. PubMed ID: 25995270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Native Chromatin Proteomics Reveals a Role for Specific Nucleoporins in Heterochromatin Organization and Maintenance.
    Iglesias N; Paulo JA; Tatarakis A; Wang X; Edwards AL; Bhanu NV; Garcia BA; Haas W; Gygi SP; Moazed D
    Mol Cell; 2020 Jan; 77(1):51-66.e8. PubMed ID: 31784357
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unreeling the chromatin thread: a genomic perspective on organization around the periphery of the Arabidopsis nucleus.
    Barneche F; Baroux C
    Genome Biol; 2017 May; 18(1):97. PubMed ID: 28535814
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The consequences of differential origin licensing dynamics in distinct chromatin environments.
    Mei L; Kedziora KM; Song EA; Purvis JE; Cook JG
    Nucleic Acids Res; 2022 Sep; 50(17):9601-9620. PubMed ID: 35079814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly and characterization of heterochromatin and euchromatin on human artificial chromosomes.
    Grimes BR; Babcock J; Rudd MK; Chadwick B; Willard HF
    Genome Biol; 2004; 5(11):R89. PubMed ID: 15535865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lamina-Associated Domains: Links with Chromosome Architecture, Heterochromatin, and Gene Repression.
    van Steensel B; Belmont AS
    Cell; 2017 May; 169(5):780-791. PubMed ID: 28525751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Human genome replication proceeds through four chromatin states.
    Julienne H; Zoufir A; Audit B; Arneodo A
    PLoS Comput Biol; 2013; 9(10):e1003233. PubMed ID: 24130466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Linking replication stress with heterochromatin formation.
    Nikolov I; Taddei A
    Chromosoma; 2016 Jun; 125(3):523-33. PubMed ID: 26511280
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The mammalian beta globin origin of DNA replication.
    Aladjem MI
    Front Biosci; 2004 Sep; 9():2540-7. PubMed ID: 15358579
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural-functional model of the mitotic chromosome.
    Polyakov VY; Zatsepina OV; Kireev II; Prusov AN; Fais DI; Sheval EV; Koblyakova YV; Golyshev SA; Chentsov YS
    Biochemistry (Mosc); 2006 Jan; 71(1):1-9. PubMed ID: 16457612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lamin B1 mapping reveals the existence of dynamic and functional euchromatin lamin B1 domains.
    Pascual-Reguant L; Blanco E; Galan S; Le Dily F; Cuartero Y; Serra-Bardenys G; Di Carlo V; Iturbide A; Cebrià-Costa JP; Nonell L; de Herreros AG; Di Croce L; Marti-Renom MA; Peiró S
    Nat Commun; 2018 Aug; 9(1):3420. PubMed ID: 30143639
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chromatin Heterogeneity and Distribution of Regulatory Elements in the Late-Replicating Intercalary Heterochromatin Domains of Drosophila melanogaster Chromosomes.
    Khoroshko VA; Levitsky VG; Zykova TY; Antonenko OV; Belyaeva ES; Zhimulev IF
    PLoS One; 2016; 11(6):e0157147. PubMed ID: 27300486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epigenetic aspects of differentiation.
    Arney KL; Fisher AG
    J Cell Sci; 2004 Sep; 117(Pt 19):4355-63. PubMed ID: 15331660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nucleome Dynamics during Retinal Development.
    Norrie JL; Lupo MS; Xu B; Al Diri I; Valentine M; Putnam D; Griffiths L; Zhang J; Johnson D; Easton J; Shao Y; Honnell V; Frase S; Miller S; Stewart V; Zhou X; Chen X; Dyer MA
    Neuron; 2019 Nov; 104(3):512-528.e11. PubMed ID: 31493975
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SCN- binding to the charged lysines of histones end domains mimics acetylation and shows the major histone-DNA interactions involved in eu and heterochromatin stabilization.
    Patrone E; Coradeghini R; Barboro P; D'Arrigo C; Mormino M; Parodi S; Balbi C
    J Cell Biochem; 2006 Mar; 97(4):869-81. PubMed ID: 16250000
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.