These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Experimental warming advances phenology of groundlayer plants at the boreal-temperate forest ecotone. Rice KE; Montgomery RA; Stefanski A; Rich RL; Reich PB Am J Bot; 2018 May; 105(5):851-861. PubMed ID: 29874393 [TBL] [Abstract][Full Text] [Related]
4. Phenological response to climate change in China: a meta-analysis. Ge Q; Wang H; Rutishauser T; Dai J Glob Chang Biol; 2015 Jan; 21(1):265-74. PubMed ID: 24895088 [TBL] [Abstract][Full Text] [Related]
5. Phenological sequences: how early-season events define those that follow. Ettinger AK; Gee S; Wolkovich EM Am J Bot; 2018 Oct; 105(10):1771-1780. PubMed ID: 30324664 [TBL] [Abstract][Full Text] [Related]
6. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming. Marchin RM; Salk CF; Hoffmann WA; Dunn RR Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981 [TBL] [Abstract][Full Text] [Related]
7. Phenological changes in herbaceous plants in China's grasslands and their responses to climate change: a meta-analysis. Huang W; Dai J; Wang W; Li J; Feng C; Du J Int J Biometeorol; 2020 Nov; 64(11):1865-1876. PubMed ID: 32734424 [TBL] [Abstract][Full Text] [Related]
8. Plants with lengthened phenophases increase their dominance under warming in an alpine plant community. Chen J; Luo Y; Chen Y; Felton AJ; Hopping KA; Wang RW; Niu S; Cheng X; Zhang Y; Cao J; Olesen JE; Andersen MN; Jørgensen U Sci Total Environ; 2020 Aug; 728():138891. PubMed ID: 32361364 [TBL] [Abstract][Full Text] [Related]
9. [Phenological responses of apple tree to climate warming in the main apple production areas in northern China]. Liu L; Guo L; Wang JH; Luan Q; Fu WD; Li MH Ying Yong Sheng Tai Xue Bao; 2020 Mar; 31(3):845-852. PubMed ID: 32537980 [TBL] [Abstract][Full Text] [Related]
10. Climate warming leads to advanced fruit development period of temperate woody species but divergent changes in its length. Ma Q; Hänninen H; Berninger F; Li X; Huang JG Glob Chang Biol; 2022 Oct; 28(20):6021-6032. PubMed ID: 35901248 [TBL] [Abstract][Full Text] [Related]
11. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Collins CG; Elmendorf SC; Hollister RD; Henry GHR; Clark K; Bjorkman AD; Myers-Smith IH; Prevéy JS; Ashton IW; Assmann JJ; Alatalo JM; Carbognani M; Chisholm C; Cooper EJ; Forrester C; Jónsdóttir IS; Klanderud K; Kopp CW; Livensperger C; Mauritz M; May JL; Molau U; Oberbauer SF; Ogburn E; Panchen ZA; Petraglia A; Post E; Rixen C; Rodenhizer H; Schuur EAG; Semenchuk P; Smith JG; Steltzer H; Totland Ø; Walker MD; Welker JM; Suding KN Nat Commun; 2021 Jun; 12(1):3442. PubMed ID: 34117253 [TBL] [Abstract][Full Text] [Related]
12. Experimental Warming Changes Phenology and Shortens Growing Season of the Dominant Invasive Plant Howell A; Winkler DE; Phillips ML; McNellis B; Reed SC Front Plant Sci; 2020; 11():570001. PubMed ID: 33178240 [No Abstract] [Full Text] [Related]
13. The effects of warming-shifted plant phenology on ecosystem carbon exchange are regulated by precipitation in a semi-arid grassland. Xia J; Wan S PLoS One; 2012; 7(2):e32088. PubMed ID: 22359660 [TBL] [Abstract][Full Text] [Related]
14. Accelerating effects of growing-season warming on tree seasonal activities are progressively disappearing. Qiao Y; Gu H; Xu H; Ma Q; Zhang X; Yan Q; Gao J; Yang Y; Rossi S; Smith NG; Liu J; Chen L Curr Biol; 2023 Sep; 33(17):3625-3633.e3. PubMed ID: 37567171 [TBL] [Abstract][Full Text] [Related]
15. Distribution of plant mycorrhizal traits along an elevational gradient does not fully mirror the latitudinal gradient. Bueno CG; Gerz M; Moora M; Leon D; Gomez-Garcia D; de Leon DG; Font X; Al-Quraishy S; Hozzein WN; Zobel M Mycorrhiza; 2021 Mar; 31(2):149-159. PubMed ID: 33475799 [TBL] [Abstract][Full Text] [Related]
16. Climate warming-driven phenological shifts are species-specific in woody plants: evidence from twig experiment in Kashmir Himalaya. Hassan T; Ahmad R; Wani SA; Gulzar R; Waza SA; Khuroo AA Int J Biometeorol; 2022 Aug; 66(9):1771-1785. PubMed ID: 35759146 [TBL] [Abstract][Full Text] [Related]
17. The influence of climate warming on flowering phenology in relation to historical annual and seasonal temperatures and plant functional traits. Geissler C; Davidson A; Niesenbaum RA PeerJ; 2023; 11():e15188. PubMed ID: 37101791 [TBL] [Abstract][Full Text] [Related]
18. Environmental modulation of plant mycorrhizal traits in the global flora. Meng Y; Davison J; Clarke JT; Zobel M; Gerz M; Moora M; Öpik M; Bueno CG Ecol Lett; 2023 Nov; 26(11):1862-1876. PubMed ID: 37766496 [TBL] [Abstract][Full Text] [Related]
19. Diminishing warming effects on plant phenology over time. Lu C; van Groenigen KJ; Gillespie MAK; Hollister RD; Post E; Cooper EJ; Welker JM; Huang Y; Min X; Chen J; Jónsdóttir IS; Mauritz M; Cannone N; Natali SM; Schuur E; Molau U; Yan T; Wang H; He JS; Liu H New Phytol; 2024 Aug; ():. PubMed ID: 39103987 [TBL] [Abstract][Full Text] [Related]
20. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community. Mulder CP; Iles DT; Rockwell RF Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]