These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 39085046)

  • 1. Advances in evolved T7 RNA polymerases for expanding the frontiers of enzymatic nucleic acid synthesis.
    Shu L; Yang L; Nie Z; Lei C
    Chembiochem; 2024 Jul; ():e202400483. PubMed ID: 39085046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of promoter and terminator sites on bacteriophage T7 DNA by RNA polymerases from a variety of bacterial orders.
    Wiggs JL; Bush JW; Chamberlin MJ
    Cell; 1979 Jan; 16(1):97-109. PubMed ID: 421272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [RNA synthesis by T7 RNA polymerase supported primer extension].
    Ivanov SA; Welz R; Gottikh MB; Müller S
    Mol Biol (Mosk); 2004; 38(5):798-803. PubMed ID: 15554183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription, Reverse Transcription, and Amplification of Backbone-Modified Nucleic Acids with Laboratory-Evolved Thermophilic DNA Polymerases.
    Song P; Zhang R; He C; Chen T
    Curr Protoc; 2021 Jul; 1(7):e188. PubMed ID: 34232574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advancing the enzymatic toolkit for 2'-fluoro arabino nucleic acid (FANA) manipulation: phosphorylation, ligation, replication, and templating RNA transcription.
    Liu Y; Wang J; Wu Y; Wang Y
    Chem Sci; 2024 Aug; 15(31):12534-12542. PubMed ID: 39118620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site.
    Klement JF; Moorefield MB; Jorgensen E; Brown JE; Risman S; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):21-9. PubMed ID: 2204706
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [RNA synthesis using T7 phage RNA polymerase: transcription of synthetic DNA templates in solution and on polymer support].
    Elov AA; Volkov EM; Reĭntamm TG; Oretskaia TS; Shabarova ZA
    Bioorg Khim; 1989 Feb; 15(2):159-65. PubMed ID: 2472795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes.
    Schaffter SW; Kengmana E; Fern J; Byrne SR; Schulman R
    ACS Synth Biol; 2024 Jul; 13(7):1964-1977. PubMed ID: 38885464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoter-independent synthesis of chemically modified RNA by human DNA polymerase θ variants.
    Tredinnick T; Kent T; Minakhin L; Li Z; Madzo J; Chen XS; Pomerantz RT
    RNA; 2023 Aug; 29(8):1288-1300. PubMed ID: 37105714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model for the mechanism of bacteriophage T7 RNAP transcription initiation and termination.
    Sousa R; Patra D; Lafer EM
    J Mol Biol; 1992 Mar; 224(2):319-34. PubMed ID: 1560455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter Length Affects the Initiation of T7 RNA Polymerase In Vitro: New Insights into Promoter/Polymerase Co-evolution.
    Padmanabhan R; Sarcar SN; Miller DL
    J Mol Evol; 2020 Mar; 88(2):179-193. PubMed ID: 31863129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and stability of mRNA synthesized by vaccinia virus-encoded bacteriophage T7 RNA polymerase in mammalian cells. Importance of the 5' untranslated leader.
    Fuerst TR; Moss B
    J Mol Biol; 1989 Mar; 206(2):333-48. PubMed ID: 2497259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase.
    Nacheva GA; Berzal-Herranz A
    Eur J Biochem; 2003 Apr; 270(7):1458-65. PubMed ID: 12654001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined in vitro/in vivo selection for polymerases with novel promoter specificities.
    Chelliserrykattil J; Cai G; Ellington AD
    BMC Biotechnol; 2001; 1():13. PubMed ID: 11806761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Making RNA: Using T7 RNA polymerase to produce high yields of RNA from DNA templates.
    Liu T; Patel S; Pyle AM
    Methods Enzymol; 2023; 691():185-207. PubMed ID: 37914446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes.
    Studier FW; Moffatt BA
    J Mol Biol; 1986 May; 189(1):113-30. PubMed ID: 3537305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity.
    Joho KE; Gross LB; McGraw NJ; Raskin C; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):31-9. PubMed ID: 2204707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nuclease activity of T7 RNA polymerase and the heterogeneity of transcription elongation complexes.
    Sastry SS; Ross BM
    J Biol Chem; 1997 Mar; 272(13):8644-52. PubMed ID: 9079696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mutant bacteriophage T7 RNA polymerases with altered termination properties.
    Lyakhov DL; He B; Zhang X; Studier FW; Dunn JJ; McAllister WT
    J Mol Biol; 1997 May; 269(1):28-40. PubMed ID: 9192998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimized RNA amplification using T7-RNA-polymerase based in vitro transcription.
    Moll PR; Duschl J; Richter K
    Anal Biochem; 2004 Nov; 334(1):164-74. PubMed ID: 15464965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.