These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 39085234)
1. Botrytis cinerea combines four molecular strategies to tolerate membrane-permeating plant compounds and to increase virulence. You Y; Suraj HM; Matz L; Herrera Valderrama AL; Ruigrok P; Shi-Kunne X; Pieterse FPJ; Oostlander A; Beenen HG; Chavarro-Carrero EA; Qin S; Verstappen FWA; Kappers IF; Fleißner A; van Kan JAL Nat Commun; 2024 Jul; 15(1):6448. PubMed ID: 39085234 [TBL] [Abstract][Full Text] [Related]
2. Transcriptome analysis and functional validation reveal a novel gene, BcCGF1, that enhances fungal virulence by promoting infection-related development and host penetration. Zhang MZ; Sun CH; Liu Y; Feng HQ; Chang HW; Cao SN; Li GH; Yang S; Hou J; Zhu-Salzman K; Zhang H; Qin QM Mol Plant Pathol; 2020 Jun; 21(6):834-853. PubMed ID: 32301267 [TBL] [Abstract][Full Text] [Related]
3. The GATA transcription factor BcWCL2 regulates citric acid secretion to maintain redox homeostasis and full virulence in Ren W; Qian C; Ren D; Cai Y; Deng Z; Zhang N; Wang C; Wang Y; Zhu P; Xu L mBio; 2024 Jul; 15(7):e0013324. PubMed ID: 38814088 [No Abstract] [Full Text] [Related]
4. Aquaporin8 regulates cellular development and reactive oxygen species production, a critical component of virulence in Botrytis cinerea. An B; Li B; Li H; Zhang Z; Qin G; Tian S New Phytol; 2016 Mar; 209(4):1668-80. PubMed ID: 26527167 [TBL] [Abstract][Full Text] [Related]
5. Knocking out Bcsas1 in Botrytis cinerea impacts growth, development, and secretion of extracellular proteins, which decreases virulence. Zhang Z; Qin G; Li B; Tian S Mol Plant Microbe Interact; 2014 Jun; 27(6):590-600. PubMed ID: 24520899 [TBL] [Abstract][Full Text] [Related]
6. BcMctA, a putative monocarboxylate transporter, is required for pathogenicity in Botrytis cinerea. Cui Z; Gao N; Wang Q; Ren Y; Wang K; Zhu T Curr Genet; 2015 Nov; 61(4):545-53. PubMed ID: 25634672 [TBL] [Abstract][Full Text] [Related]
7. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea. Nafisi M; Stranne M; Zhang L; van Kan JA; Sakuragi Y Mol Plant Microbe Interact; 2014 Aug; 27(8):781-92. PubMed ID: 24725206 [TBL] [Abstract][Full Text] [Related]
8. The key gluconeogenic gene PCK1 is crucial for virulence of Botrytis cinerea via initiating its conidial germination and host penetration. Liu JK; Chang HW; Liu Y; Qin YH; Ding YH; Wang L; Zhao Y; Zhang MZ; Cao SN; Li LT; Liu W; Li GH; Qin QM Environ Microbiol; 2018 May; 20(5):1794-1814. PubMed ID: 29614212 [TBL] [Abstract][Full Text] [Related]
9. Recent Advances in the Study of the Plant Pathogenic Fungus Botrytis cinerea and its Interaction with the Environment. Castillo L; Plaza V; Larrondo LF; Canessa P Curr Protein Pept Sci; 2017; 18(10):976-989. PubMed ID: 27526927 [TBL] [Abstract][Full Text] [Related]
10. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451 [No Abstract] [Full Text] [Related]
11. The flavohemoglobin BCFHG1 is the main NO detoxification system and confers protection against nitrosative conditions but is not a virulence factor in the fungal necrotroph Botrytis cinerea. Turrion-Gomez JL; Eslava AP; Benito EP Fungal Genet Biol; 2010 May; 47(5):484-96. PubMed ID: 20223291 [TBL] [Abstract][Full Text] [Related]
12. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. van Esse HP; Van't Klooster JW; Bolton MD; Yadeta KA; van Baarlen P; Boeren S; Vervoort J; de Wit PJ; Thomma BP Plant Cell; 2008 Jul; 20(7):1948-63. PubMed ID: 18660430 [TBL] [Abstract][Full Text] [Related]
13. Phenotypic Effects and Inhibition of Botrydial Biosynthesis Induced by Different Plant-Based Elicitors in Botrytis cinerea. Liñeiro E; Macias-Sánchez AJ; Espinazo M; Cantoral JM; Moraga J; Collado IG; Fernández-Acero FJ Curr Microbiol; 2018 Apr; 75(4):431-440. PubMed ID: 29147762 [TBL] [Abstract][Full Text] [Related]
14. Transcription Factor PdeR Is Involved in Fungal Development, Metabolic Change, and Pathogenesis of Gray Mold Han JW; Kim DY; Lee YJ; Choi YR; Kim B; Choi GJ; Han SW; Kim H J Agric Food Chem; 2020 Aug; 68(34):9171-9179. PubMed ID: 32786857 [TBL] [Abstract][Full Text] [Related]
15. Defects in the Ferroxidase That Participates in the Reductive Iron Assimilation System Results in Hypervirulence in Vasquez-Montaño E; Hoppe G; Vega A; Olivares-Yañez C; Canessa P mBio; 2020 Aug; 11(4):. PubMed ID: 32753496 [TBL] [Abstract][Full Text] [Related]
16. Redox systems in Botrytis cinerea: impact on development and virulence. Viefhues A; Heller J; Temme N; Tudzynski P Mol Plant Microbe Interact; 2014 Aug; 27(8):858-74. PubMed ID: 24983673 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms of plant protection against two oxalate-producing fungal pathogens by oxalotrophic strains of Stenotrophomonas spp. Marina M; Romero FM; Villarreal NM; Medina AJ; Gárriz A; Rossi FR; Martinez GA; Pieckenstain FL Plant Mol Biol; 2019 Aug; 100(6):659-674. PubMed ID: 31187392 [TBL] [Abstract][Full Text] [Related]
18. Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Del Sorbo G; Ruocco M; Schoonbeek HJ; Scala F; Pane C; Vinale F; De Waard MA Mycol Res; 2008 Jun; 112(Pt 6):737-46. PubMed ID: 18515055 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome Profiling Data of Srivastava DA; Arya GC; Pandaranayaka EP; Manasherova E; Prusky DB; Elad Y; Frenkel O; Harel A Mol Plant Microbe Interact; 2020 Sep; 33(9):1103-1107. PubMed ID: 32552519 [No Abstract] [Full Text] [Related]
20. The VELVET Complex in the Gray Mold Fungus Botrytis cinerea: Impact of BcLAE1 on Differentiation, Secondary Metabolism, and Virulence. Schumacher J; Simon A; Cohrs KC; Traeger S; Porquier A; Dalmais B; Viaud M; Tudzynski B Mol Plant Microbe Interact; 2015 Jun; 28(6):659-74. PubMed ID: 25625818 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]