These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 39085442)
1. SHAP based predictive modeling for 1 year all-cause readmission risk in elderly heart failure patients: feature selection and model interpretation. Luo H; Xiang C; Zeng L; Li S; Mei X; Xiong L; Liu Y; Wen C; Cui Y; Du L; Zhou Y; Wang K; Li L; Liu Z; Wu Q; Pu J; Yue R Sci Rep; 2024 Jul; 14(1):17728. PubMed ID: 39085442 [TBL] [Abstract][Full Text] [Related]
2. Predicting 1 year readmission for heart failure: A comparative study of machine learning and the LACE index. Song X; Tong Y; Xian F; Luo Y; Tong R ESC Heart Fail; 2024 Oct; 11(5):2648-2660. PubMed ID: 38778700 [TBL] [Abstract][Full Text] [Related]
3. Development of a prediction model for the risk of 30-day unplanned readmission in older patients with heart failure: A multicenter retrospective study. Zhang Y; Wang H; Yin C; Shu T; Yu J; Jian J; Jian C; Duan M; Kadier K; Xu Q; Wang X; Xiang T; Liu X Nutr Metab Cardiovasc Dis; 2023 Oct; 33(10):1878-1887. PubMed ID: 37500347 [TBL] [Abstract][Full Text] [Related]
4. Establishment and validation of a heart failure risk prediction model for elderly patients after coronary rotational atherectomy based on machine learning. Zhang L; Zhou X; Cao J PeerJ; 2024; 12():e16867. PubMed ID: 38313005 [TBL] [Abstract][Full Text] [Related]
5. Development of interpretable machine learning models to predict in-hospital prognosis of acute heart failure patients. Tanaka M; Kohjitani H; Yamamoto E; Morimoto T; Kato T; Yaku H; Inuzuka Y; Tamaki Y; Ozasa N; Seko Y; Shiba M; Yoshikawa Y; Yamashita Y; Kitai T; Taniguchi R; Iguchi M; Nagao K; Kawai T; Komasa A; Kawase Y; Morinaga T; Toyofuku M; Furukawa Y; Ando K; Kadota K; Sato Y; Kuwahara K; Okuno Y; Kimura T; Ono K; ESC Heart Fail; 2024 Oct; 11(5):2798-2812. PubMed ID: 38751135 [TBL] [Abstract][Full Text] [Related]
6. Predicting Mortality in Intensive Care Unit Patients With Heart Failure Using an Interpretable Machine Learning Model: Retrospective Cohort Study. Li J; Liu S; Hu Y; Zhu L; Mao Y; Liu J J Med Internet Res; 2022 Aug; 24(8):e38082. PubMed ID: 35943767 [TBL] [Abstract][Full Text] [Related]
7. Interpretable machine learning for 28-day all-cause in-hospital mortality prediction in critically ill patients with heart failure combined with hypertension: A retrospective cohort study based on medical information mart for intensive care database-IV and eICU databases. Peng S; Huang J; Liu X; Deng J; Sun C; Tang J; Chen H; Cao W; Wang W; Duan X; Luo X; Peng S Front Cardiovasc Med; 2022; 9():994359. PubMed ID: 36312291 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study. Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583 [TBL] [Abstract][Full Text] [Related]
9. Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure. Wang Q; Li B; Chen K; Yu F; Su H; Hu K; Liu Z; Wu G; Yan J; Su G ESC Heart Fail; 2021 Dec; 8(6):5363-5371. PubMed ID: 34585531 [TBL] [Abstract][Full Text] [Related]
10. Feature selection and transformation by machine learning reduce variable numbers and improve prediction for heart failure readmission or death. Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Chow BJ; Dwivedi G PLoS One; 2019; 14(6):e0218760. PubMed ID: 31242238 [TBL] [Abstract][Full Text] [Related]
11. Machine learning-based in-hospital mortality risk prediction tool for intensive care unit patients with heart failure. Chen Z; Li T; Guo S; Zeng D; Wang K Front Cardiovasc Med; 2023; 10():1119699. PubMed ID: 37077747 [TBL] [Abstract][Full Text] [Related]
12. Prediction of Major Complications and Readmission After Lumbar Spinal Fusion: A Machine Learning-Driven Approach. Shah AA; Devana SK; Lee C; Bugarin A; Lord EL; Shamie AN; Park DY; van der Schaar M; SooHoo NF World Neurosurg; 2021 Aug; 152():e227-e234. PubMed ID: 34058366 [TBL] [Abstract][Full Text] [Related]
13. Machine learning-based prediction of heart failure readmission or death: implications of choosing the right model and the right metrics. Awan SE; Bennamoun M; Sohel F; Sanfilippo FM; Dwivedi G ESC Heart Fail; 2019 Apr; 6(2):428-435. PubMed ID: 30810291 [TBL] [Abstract][Full Text] [Related]
14. Development and internal validation of machine learning models for personalized survival predictions in spinal cord glioma patients. Karabacak M; Schupper AJ; Carr MT; Bhimani AD; Steinberger J; Margetis K Spine J; 2024 Jun; 24(6):1065-1076. PubMed ID: 38365005 [TBL] [Abstract][Full Text] [Related]
15. The Price of Explainability in Machine Learning Models for 100-Day Readmission Prediction in Heart Failure: Retrospective, Comparative, Machine Learning Study. Soliman A; Agvall B; Etminani K; Hamed O; Lingman M J Med Internet Res; 2023 Oct; 25():e46934. PubMed ID: 37889530 [TBL] [Abstract][Full Text] [Related]
16. Machine learning and LACE index for predicting 30-day readmissions after heart failure hospitalization in elderly patients. Polo Friz H; Esposito V; Marano G; Primitz L; Bovio A; Delgrossi G; Bombelli M; Grignaffini G; Monza G; Boracchi P Intern Emerg Med; 2022 Sep; 17(6):1727-1737. PubMed ID: 35661313 [TBL] [Abstract][Full Text] [Related]
17. Application of machine learning model in predicting the likelihood of blood transfusion after hip fracture surgery. Chen X; Pan J; Li Y; Tang R Aging Clin Exp Res; 2023 Nov; 35(11):2643-2656. PubMed ID: 37733228 [TBL] [Abstract][Full Text] [Related]
18. Multimodal Machine Learning for Prediction of 30-Day Readmission Risk in Elderly Population. Loutati R; Ben-Yehuda A; Rosenberg S; Rottenberg Y Am J Med; 2024 Jul; 137(7):617-628. PubMed ID: 38588939 [TBL] [Abstract][Full Text] [Related]
19. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study. Tang D; Ma C; Xu Y Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233 [TBL] [Abstract][Full Text] [Related]
20. Comparison of Machine Learning Algorithms for Predicting Hospital Readmissions and Worsening Heart Failure Events in Patients With Heart Failure With Reduced Ejection Fraction: Modeling Study. Ru B; Tan X; Liu Y; Kannapur K; Ramanan D; Kessler G; Lautsch D; Fonarow G JMIR Form Res; 2023 Apr; 7():e41775. PubMed ID: 37067873 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]