These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 39085788)
1. CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer. Xu T; Liu X; Chen Y; Wang S; Jiang C; Gong J BMC Med Imaging; 2024 Jul; 24(1):196. PubMed ID: 39085788 [TBL] [Abstract][Full Text] [Related]
2. Radiomics study for predicting the expression of PD-L1 in non-small cell lung cancer based on CT images and clinicopathologic features. Sun Z; Hu S; Ge Y; Wang J; Duan S; Song J; Hu C; Li Y J Xray Sci Technol; 2020; 28(3):449-459. PubMed ID: 32176676 [TBL] [Abstract][Full Text] [Related]
3. Multiparameter spectral CT-based radiomics in predicting the expression of programmed death ligand 1 in non-small-cell lung cancer. Zheng XX; Ma YQ; Cui YQ; Dong SS; Chang FX; Zhu DL; Huang G Clin Radiol; 2024 Apr; 79(4):e511-e523. PubMed ID: 38307814 [TBL] [Abstract][Full Text] [Related]
4. Assessing PD-L1 expression in non-small cell lung cancer and predicting responses to immune checkpoint inhibitors using deep learning on computed tomography images. Tian P; He B; Mu W; Liu K; Liu L; Zeng H; Liu Y; Jiang L; Zhou P; Huang Z; Dong D; Li W Theranostics; 2021; 11(5):2098-2107. PubMed ID: 33500713 [No Abstract] [Full Text] [Related]
5. Quantitative CT texture analysis in predicting PD-L1 expression in locally advanced or metastatic NSCLC patients. Bracci S; Dolciami M; Trobiani C; Izzo A; Pernazza A; D'Amati G; Manganaro L; Ricci P Radiol Med; 2021 Nov; 126(11):1425-1433. PubMed ID: 34373989 [TBL] [Abstract][Full Text] [Related]
6. Prediction of programmed death-1 expression status in non-small cell lung cancer based on intratumoural and peritumoral computed tomography (CT) radiomics nomogram. Tian Q; Jia JY; Qin C; Zhou H; Zhou SY; Qin YH; Wu YY; Shi J; Duan SF; Feng F Clin Radiol; 2024 Sep; 79(9):e1089-e1100. PubMed ID: 38876960 [TBL] [Abstract][Full Text] [Related]
7. A novel sub-regional radiomics model to predict immunotherapy response in non-small cell lung carcinoma. Peng J; Zou D; Zhang X; Ma H; Han L; Yao B J Transl Med; 2024 Jan; 22(1):87. PubMed ID: 38254087 [TBL] [Abstract][Full Text] [Related]
8. Development and Validation of a Deep Learning Radiomics Model to Predict High-Risk Pathologic Pulmonary Nodules Using Preoperative Computed Tomography. Ye G; Wu G; Li K; Zhang C; Zhuang Y; Liu H; Song E; Qi Y; Li Y; Yang F; Liao Y Acad Radiol; 2024 Apr; 31(4):1686-1697. PubMed ID: 37802672 [TBL] [Abstract][Full Text] [Related]
9. Non-Invasive Measurement Using Deep Learning Algorithm Based on Multi-Source Features Fusion to Predict PD-L1 Expression and Survival in NSCLC. Wang C; Ma J; Shao J; Zhang S; Li J; Yan J; Zhao Z; Bai C; Yu Y; Li W Front Immunol; 2022; 13():828560. PubMed ID: 35464416 [TBL] [Abstract][Full Text] [Related]
10. Predicting N2 lymph node metastasis in presurgical stage I-II non-small cell lung cancer using multiview radiomics and deep learning method. Zhang H; Liao M; Guo Q; Chen J; Wang S; Liu S; Xiao F Med Phys; 2023 Apr; 50(4):2049-2060. PubMed ID: 36563341 [TBL] [Abstract][Full Text] [Related]
11. Radiomics for the non-invasive prediction of PD-L1 expression in patients with brain metastases secondary to non-small cell lung cancer. Meißner AK; Gutsche R; Galldiks N; Kocher M; Jünger ST; Eich ML; Nogova L; Araceli T; Schmidt NO; Ruge MI; Goldbrunner R; Proescholdt M; Grau S; Lohmann P J Neurooncol; 2023 Jul; 163(3):597-605. PubMed ID: 37382806 [TBL] [Abstract][Full Text] [Related]
12. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Sun R; Limkin EJ; Vakalopoulou M; Dercle L; Champiat S; Han SR; Verlingue L; Brandao D; Lancia A; Ammari S; Hollebecque A; Scoazec JY; Marabelle A; Massard C; Soria JC; Robert C; Paragios N; Deutsch E; Ferté C Lancet Oncol; 2018 Sep; 19(9):1180-1191. PubMed ID: 30120041 [TBL] [Abstract][Full Text] [Related]
13. Automated PD-L1 status prediction in lung cancer with multi-modal PET/CT fusion. Da-Ano R; Andrade-Miranda G; Tankyevych O; Visvikis D; Conze PH; Rest CCL Sci Rep; 2024 Jul; 14(1):16720. PubMed ID: 39030240 [TBL] [Abstract][Full Text] [Related]
14. Combination of computed tomography imaging-based radiomics and clinicopathological characteristics for predicting the clinical benefits of immune checkpoint inhibitors in lung cancer. Yang B; Zhou L; Zhong J; Lv T; Li A; Ma L; Zhong J; Yin S; Huang L; Zhou C; Li X; Ge YQ; Tao X; Zhang L; Son Y; Lu G Respir Res; 2021 Jun; 22(1):189. PubMed ID: 34183009 [TBL] [Abstract][Full Text] [Related]
15. Utility of CT radiomics for prediction of PD-L1 expression in advanced lung adenocarcinomas. Yoon J; Suh YJ; Han K; Cho H; Lee HJ; Hur J; Choi BW Thorac Cancer; 2020 Apr; 11(4):993-1004. PubMed ID: 32043309 [TBL] [Abstract][Full Text] [Related]
16. Multimodal deep learning radiomics model for predicting postoperative progression in solid stage I non-small cell lung cancer. Kuang Q; Feng B; Xu K; Chen Y; Chen X; Duan X; Lei X; Chen X; Li K; Long W Cancer Imaging; 2024 Oct; 24(1):140. PubMed ID: 39420411 [TBL] [Abstract][Full Text] [Related]
17. Predicting PD-L1 expression status in patients with non-small cell lung cancer using [ Zhao X; Zhao Y; Zhang J; Zhang Z; Liu L; Zhao X EJNMMI Res; 2023 Jan; 13(1):4. PubMed ID: 36682020 [TBL] [Abstract][Full Text] [Related]
18. Quantitative Radiological Features and Deep Learning for the Non-Invasive Evaluation of Programmed Death Ligand 1 Expression Levels in Gastric Cancer Patients: A Digital Biopsy Study. Xie W; Jiang Z; Zhou X; Zhang X; Zhang M; Liu R; Zheng L; Xin F; Lu Y; Wang D Acad Radiol; 2023 Jul; 30(7):1317-1328. PubMed ID: 36369191 [TBL] [Abstract][Full Text] [Related]
19. Non-invasive measurement of PD-L1 status and prediction of immunotherapy response using deep learning of PET/CT images. Mu W; Jiang L; Shi Y; Tunali I; Gray JE; Katsoulakis E; Tian J; Gillies RJ; Schabath MB J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34135101 [TBL] [Abstract][Full Text] [Related]
20. Enhancing brain metastasis prediction in non-small cell lung cancer: a deep learning-based segmentation and CT radiomics-based ensemble learning model. Gong J; Wang T; Wang Z; Chu X; Hu T; Li M; Peng W; Feng F; Tong T; Gu Y Cancer Imaging; 2024 Jan; 24(1):1. PubMed ID: 38167564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]