These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. MVGCNMDA: Multi-view Graph Augmentation Convolutional Network for Uncovering Disease-Related Microbes. Hua M; Yu S; Liu T; Yang X; Wang H Interdiscip Sci; 2022 Sep; 14(3):669-682. PubMed ID: 35428964 [TBL] [Abstract][Full Text] [Related]
3. Prediction of circRNA-Disease Associations Based on the Combination of Multi-Head Graph Attention Network and Graph Convolutional Network. Cao R; He C; Wei P; Su Y; Xia J; Zheng C Biomolecules; 2022 Jul; 12(7):. PubMed ID: 35883487 [TBL] [Abstract][Full Text] [Related]
4. HKFGCN: A novel multiple kernel fusion framework on graph convolutional network to predict microbe-drug associations. Wu Z; Li S; Luo L; Ding P Comput Biol Chem; 2024 Jun; 110():108041. PubMed ID: 38471354 [TBL] [Abstract][Full Text] [Related]
5. Predicting human microbe-drug associations via graph convolutional network with conditional random field. Long Y; Wu M; Kwoh CK; Luo J; Li X Bioinformatics; 2020 Dec; 36(19):4918-4927. PubMed ID: 32597948 [TBL] [Abstract][Full Text] [Related]
6. BRWMDA:Predicting Microbe-Disease Associations Based on Similarities and Bi-Random Walk on Disease and Microbe Networks. Yan C; Duan G; Wu FX; Pan Y; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1595-1604. PubMed ID: 30932846 [TBL] [Abstract][Full Text] [Related]
7. CMFHMDA: a prediction framework for human disease-microbe associations based on cross-domain matrix factorization. Chen J; Tao R; Qiu Y; Yuan Q Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39327064 [TBL] [Abstract][Full Text] [Related]
8. Microbe-drug association prediction model based on graph convolution and attention networks. Wang B; Wang T; Du X; Li J; Wang J; Wu P Sci Rep; 2024 Sep; 14(1):22327. PubMed ID: 39333143 [TBL] [Abstract][Full Text] [Related]
9. MCHMDA:Predicting Microbe-Disease Associations Based on Similarities and Low-Rank Matrix Completion. Yan C; Duan G; Wu FX; Pan Y; Wang J IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):611-620. PubMed ID: 31295117 [TBL] [Abstract][Full Text] [Related]
10. GACNNMDA: a computational model for predicting potential human microbe-drug associations based on graph attention network and CNN-based classifier. Ma Q; Tan Y; Wang L BMC Bioinformatics; 2023 Feb; 24(1):35. PubMed ID: 36732704 [TBL] [Abstract][Full Text] [Related]
11. MNNMDA: Predicting human microbe-disease association via a method to minimize matrix nuclear norm. Liu H; Bing P; Zhang M; Tian G; Ma J; Li H; Bao M; He K; He J; He B; Yang J Comput Struct Biotechnol J; 2023; 21():1414-1423. PubMed ID: 36824227 [TBL] [Abstract][Full Text] [Related]
12. Identifying Protein Phosphorylation Site-Disease Associations Based on Multi-Similarity Fusion and Negative Sample Selection by Convolutional Neural Network. Deng Q; Zhang J; Liu J; Liu Y; Dai Z; Zou X; Li Z Interdiscip Sci; 2024 Sep; 16(3):649-664. PubMed ID: 38457108 [TBL] [Abstract][Full Text] [Related]
13. CRPGCN: predicting circRNA-disease associations using graph convolutional network based on heterogeneous network. Ma Z; Kuang Z; Deng L BMC Bioinformatics; 2021 Nov; 22(1):551. PubMed ID: 34772332 [TBL] [Abstract][Full Text] [Related]
14. PGCNMDA: Learning node representations along paths with graph convolutional network for predicting miRNA-disease associations. Chu S; Duan G; Yan C Methods; 2024 Sep; 229():71-81. PubMed ID: 38909974 [TBL] [Abstract][Full Text] [Related]
15. Microbe-Disease Association Prediction Using RGCN Through Microbe-Drug-Disease Network. Wang Y; Lei X; Pan Y IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3353-3362. PubMed ID: 37027603 [TBL] [Abstract][Full Text] [Related]
16. gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network. Wang L; Zhong C BMC Bioinformatics; 2022 Jan; 23(1):11. PubMed ID: 34983363 [TBL] [Abstract][Full Text] [Related]
17. WMGHMDA: a novel weighted meta-graph-based model for predicting human microbe-disease association on heterogeneous information network. Long Y; Luo J BMC Bioinformatics; 2019 Nov; 20(1):541. PubMed ID: 31675979 [TBL] [Abstract][Full Text] [Related]
18. DTiGNN: Learning drug-target embedding from a heterogeneous biological network based on a two-level attention-based graph neural network. Muniyappan S; Rayan AXA; Varrieth GT Math Biosci Eng; 2023 Mar; 20(5):9530-9571. PubMed ID: 37161255 [TBL] [Abstract][Full Text] [Related]
19. PRWHMDA: Human Microbe-Disease Association Prediction by Random Walk on the Heterogeneous Network with PSO. Wu C; Gao R; Zhang D; Han S; Zhang Y Int J Biol Sci; 2018; 14(8):849-857. PubMed ID: 29989079 [TBL] [Abstract][Full Text] [Related]
20. Predicting potential microbe-disease associations based on auto-encoder and graph convolution network. Lu S; Liang Y; Li L; Miao R; Liao S; Zou Y; Yang C; Ouyang D BMC Bioinformatics; 2023 Dec; 24(1):476. PubMed ID: 38097930 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]