These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 3908689)

  • 1. Rigorous pattern-recognition methods for DNA sequences. Analysis of promoter sequences from Escherichia coli.
    Galas DJ; Eggert M; Waterman MS
    J Mol Biol; 1985 Nov; 186(1):117-28. PubMed ID: 3908689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigations of Escherichia coli promoter sequences with artificial neural networks: new signals discovered upstream of the transcriptional startpoint.
    Pedersen AG; Engelbrecht J
    Proc Int Conf Intell Syst Mol Biol; 1995; 3():292-9. PubMed ID: 7584449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of nucleotide sequences at the Escherichia coli galactose operon P1 promoter by RNA polymerase.
    Chan B; Busby S
    Gene; 1989 Dec; 84(2):227-36. PubMed ID: 2693211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The organization of open complexes between Escherichia coli RNA polymerase and DNA fragments carrying promoters either with or without consensus -35 region sequences.
    Chan B; Spassky A; Busby S
    Biochem J; 1990 Aug; 270(1):141-8. PubMed ID: 2204341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA sequence elements located immediately upstream of the -10 hexamer in Escherichia coli promoters: a systematic study.
    Burr T; Mitchell J; Kolb A; Minchin S; Busby S
    Nucleic Acids Res; 2000 May; 28(9):1864-70. PubMed ID: 10756184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Recognition of Escherichia coli promoters from the primary structure of DNA].
    Aleksandrov NN; Mironov AA
    Mol Biol (Mosk); 1987; 21(1):242-9. PubMed ID: 3553897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli promoters. I. Consensus as it relates to spacing class, specificity, repeat substructure, and three-dimensional organization.
    O'Neill MC
    J Biol Chem; 1989 Apr; 264(10):5522-30. PubMed ID: 2647720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A common structural feature in promoter sequences of E. coli.
    Tung CS; Harvey SC
    Nucleic Acids Res; 1987 Jun; 15(12):4973-85. PubMed ID: 3299261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Promoters selected from random DNA sequences.
    Horwitz MS; Loeb LA
    Proc Natl Acad Sci U S A; 1986 Oct; 83(19):7405-9. PubMed ID: 3532112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of DNA bending in various regions of a consensus-like Escherichia coli promoter on its strength in vivo and structure of the open complex in vitro.
    Lozinski T; Adrych-Rozek K; Markiewicz WT; Wierzchowski K
    Nucleic Acids Res; 1991 Jun; 19(11):2947-53. PubMed ID: 2057353
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static bend of DNA helix at the activator recognition site of the ompF promoter in Escherichia coli.
    Mizuno T
    Gene; 1987; 54(1):57-64. PubMed ID: 3301541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel method for promoter search enhanced by function-specific subgrouping of promoters--developed and tested on E.coli system.
    Rozkot F; Sázelová P; Pivec L
    Nucleic Acids Res; 1989 Jun; 17(12):4799-815. PubMed ID: 2664710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site.
    Klement JF; Moorefield MB; Jorgensen E; Brown JE; Risman S; McAllister WT
    J Mol Biol; 1990 Sep; 215(1):21-9. PubMed ID: 2204706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence distributions associated with DNA curvature are found upstream of strong E. coli promoters.
    Plaskon RR; Wartell RM
    Nucleic Acids Res; 1987 Jan; 15(2):785-96. PubMed ID: 3547329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase.
    Siegele DA; Hu JC; Walter WA; Gross CA
    J Mol Biol; 1989 Apr; 206(4):591-603. PubMed ID: 2661828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for finding long consensus patterns in nucleic acid sequences.
    Taylor P; Rosenberg P; Samsonova MG
    Comput Appl Biosci; 1991 Oct; 7(4):495-500. PubMed ID: 1747782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of promoters from two anaerobic bacteria.
    Roberts I; Hylemon PB; Holmes WM
    Microbios; 1988; 54(219):87-99. PubMed ID: 2459583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of DNA structural flexibility on promoter strength--molecular dynamics studies of E. coli promoter sequences.
    Thiyagarajan S; Rajan SS; Gautham N
    Biochem Biophys Res Commun; 2006 Mar; 341(2):557-66. PubMed ID: 16427605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoter recognition by Escherichia coli RNA polymerase: effects of the UP element on open complex formation and promoter clearance.
    Strainic MG; Sullivan JJ; Velevis A; deHaseth PL
    Biochemistry; 1998 Dec; 37(51):18074-80. PubMed ID: 9922176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequences upstream of the-35 hexamer of rrnB P1 affect promoter strength and upstream activation.
    Josaitis CA; Gaal T; Ross W; Gourse RL
    Biochim Biophys Acta; 1990 Aug; 1050(1-3):307-11. PubMed ID: 2119814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.