These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 39086998)

  • 1. Detection and Quantification of 5moU RNA Modification from Direct RNA Sequencing Data.
    Li J; Sun F; He K; Zhang L; Meng J; Huang D; Zhang Y
    Curr Genomics; 2024 May; 25(3):212-225. PubMed ID: 39086998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NanoMUD: Profiling of pseudouridine and N1-methylpseudouridine using Oxford Nanopore direct RNA sequencing.
    Zhang Y; Yan H; Wei Z; Hong H; Huang D; Liu G; Qin Q; Rong R; Gao P; Meng J; Ying B
    Int J Biol Macromol; 2024 Jun; 270(Pt 2):132433. PubMed ID: 38759861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Penguin: A tool for predicting pseudouridine sites in direct RNA nanopore sequencing data.
    Hassan D; Acevedo D; Daulatabad SV; Mir Q; Janga SC
    Methods; 2022 Jul; 203():478-487. PubMed ID: 35182749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative profiling N1-methyladenosine (m1A) RNA methylation from Oxford nanopore direct RNA sequencing data.
    Chen S; Meng J; Zhang Y
    Methods; 2024 Aug; 228():30-37. PubMed ID: 38768930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.
    Hassan D; Ariyur A; Daulatabad SV; Mir Q; Janga SC
    RNA Biol; 2024 Jan; 21(1):1-15. PubMed ID: 38758523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Chemically Modified Messenger RNA on Protein Expression.
    Li B; Luo X; Dong Y
    Bioconjug Chem; 2016 Mar; 27(3):849-53. PubMed ID: 26906521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-quantitative detection of pseudouridine modifications and type I/II hypermodifications in human mRNAs using direct long-read sequencing.
    Tavakoli S; Nabizadeh M; Makhamreh A; Gamper H; McCormick CA; Rezapour NK; Hou YM; Wanunu M; Rouhanifard SH
    Nat Commun; 2023 Jan; 14(1):334. PubMed ID: 36658122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanopore signal deviations from pseudouridine modifications in RNA are sequence-specific: quantification requires dedicated synthetic controls.
    Makhamreh A; Tavakoli S; Fallahi A; Kang X; Gamper H; Nabizadehmashhadtoroghi M; Jain M; Hou YM; Rouhanifard SH; Wanunu M
    Sci Rep; 2024 Sep; 14(1):22457. PubMed ID: 39341872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of a machine learning-based predictive model for assessing the 90-day prognostic outcome of patients with spontaneous intracerebral hemorrhage.
    Geng Z; Yang C; Zhao Z; Yan Y; Guo T; Liu C; Wu A; Wu X; Wei L; Tian Y; Hu P; Wang K
    J Transl Med; 2024 Mar; 22(1):236. PubMed ID: 38439097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of nanopore direct RNA sequencing to analyze viral RNA modifications.
    Tan L; Guo Z; Wang X; Kim DY; Li R
    mSystems; 2024 Feb; 9(2):e0116323. PubMed ID: 38294229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequoia: A Framework for Visual Analysis of RNA Modifications from Direct RNA Sequencing Data.
    Koonchanok R; Daulatabad SV; Reda K; Janga SC
    Methods Mol Biol; 2023; 2624():127-138. PubMed ID: 36723813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanopore Dwell Time Analysis Permits Sequencing and Conformational Assignment of Pseudouridine in SARS-CoV-2.
    Fleming AM; Mathewson NJ; Howpay Manage SA; Burrows CJ
    ACS Cent Sci; 2021 Oct; 7(10):1707-1717. PubMed ID: 34729414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Beyond sequencing: machine learning algorithms extract biology hidden in Nanopore signal data.
    Wan YK; Hendra C; Pratanwanich PN; Göke J
    Trends Genet; 2022 Mar; 38(3):246-257. PubMed ID: 34711425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA Modification Detection Using Nanopore Direct RNA Sequencing and nanoDoc2.
    Ueda H; Dasgupta B; Yu BY
    Methods Mol Biol; 2023; 2632():299-319. PubMed ID: 36781737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MasterOfPores: A Workflow for the Analysis of Oxford Nanopore Direct RNA Sequencing Datasets.
    Cozzuto L; Liu H; Pryszcz LP; Pulido TH; Delgado-Tejedor A; Ponomarenko J; Novoa EM
    Front Genet; 2020; 11():211. PubMed ID: 32256520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decoding the epitranscriptional landscape from native RNA sequences.
    Jenjaroenpun P; Wongsurawat T; Wadley TD; Wassenaar TM; Liu J; Dai Q; Wanchai V; Akel NS; Jamshidi-Parsian A; Franco AT; Boysen G; Jennings ML; Ussery DW; He C; Nookaew I
    Nucleic Acids Res; 2021 Jan; 49(2):e7. PubMed ID: 32710622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LongGF: computational algorithm and software tool for fast and accurate detection of gene fusions by long-read transcriptome sequencing.
    Liu Q; Hu Y; Stucky A; Fang L; Zhong JF; Wang K
    BMC Genomics; 2020 Dec; 21(Suppl 11):793. PubMed ID: 33372596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EpiNano: Detection of m
    Liu H; Begik O; Novoa EM
    Methods Mol Biol; 2021; 2298():31-52. PubMed ID: 34085237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interferon inducible pseudouridine modification in human mRNA by quantitative nanopore profiling.
    Huang S; Zhang W; Katanski CD; Dersh D; Dai Q; Lolans K; Yewdell J; Eren AM; Pan T
    Genome Biol; 2021 Dec; 22(1):330. PubMed ID: 34872593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification mapping by nanopore sequencing.
    White LK; Hesselberth JR
    Front Genet; 2022; 13():1037134. PubMed ID: 36386798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.