These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 39087546)

  • 1. Surface populations as a model for the distance-dependence of the interfacial refractive index.
    Yang P; Kumarasiri A; Hore D
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39087546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant headgroup orientation at the air/water interface.
    Hore DK; Beaman DK; Richmond GL
    J Am Chem Soc; 2005 Jul; 127(26):9356-7. PubMed ID: 15984848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dielectric function profile across the water interface through surface-specific vibrational spectroscopy and simulations.
    Chiang KY; Seki T; Yu CC; Ohto T; Hunger J; Bonn M; Nagata Y
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2204156119. PubMed ID: 36037357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational Sum Frequency Generation Spectroscopy of the Water Liquid-Vapor Interface from Density Functional Theory-Based Molecular Dynamics Simulations.
    Sulpizi M; Salanne M; Sprik M; Gaigeot MP
    J Phys Chem Lett; 2013 Jan; 4(1):83-7. PubMed ID: 26291216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First hyperpolarizability of water at the air-vapor interface: a QM/MM study questions standard experimental approximations.
    Le Breton G; Bonhomme O; Brevet PF; Benichou E; Loison C
    Phys Chem Chem Phys; 2021 Nov; 23(43):24932-24941. PubMed ID: 34726679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial Water Features at Air-Water Interfaces as Influenced by Charged Surfactants.
    Truong VNT; Wang X; Dang LX; Miller JD
    J Phys Chem B; 2019 Mar; 123(10):2397-2404. PubMed ID: 30767526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of counterions on the structure and dynamics of water near a negatively charged surfactant: a theoretical vibrational sum frequency generation study.
    Malik R; Saito S; Chandra A
    Phys Chem Chem Phys; 2024 Jun; 26(24):17065-17074. PubMed ID: 38841889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces. II. Two-dimensional spectra.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Dec; 141(22):22D505. PubMed ID: 25494776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ab initio Modeling of the Vibrational Sum-Frequency Generation Spectrum of Interfacial Water.
    Liang C; Jeon J; Cho M
    J Phys Chem Lett; 2019 Mar; 10(5):1153-1158. PubMed ID: 30802060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Second-Order Nonlinear Optics as an Orientation-Independent Probe of Molecular Environments at Interfaces.
    Kumarasiri A; Yang P; Hore DK
    J Phys Chem Lett; 2023 May; 14(19):4449-4453. PubMed ID: 37146122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Fresnel factor correction of sum-frequency generation spectra of interfacial water.
    Yu X; Chiang KY; Yu CC; Bonn M; Nagata Y
    J Chem Phys; 2023 Jan; 158(4):044701. PubMed ID: 36725499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-Frequency Generation.
    Tang F; Ohto T; Sun S; Rouxel JR; Imoto S; Backus EHG; Mukamel S; Bonn M; Nagata Y
    Chem Rev; 2020 Apr; 120(8):3633-3667. PubMed ID: 32141737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orientation determination of protein helical secondary structures using linear and nonlinear vibrational spectroscopy.
    Nguyen KT; Le Clair SV; Ye S; Chen Z
    J Phys Chem B; 2009 Sep; 113(36):12169-80. PubMed ID: 19650636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Study of the Two-Dimensional Vibrational Sum Frequency Generation Spectroscopy of the Air-Water Interface at Varying Temperature and Its Connections to the Interfacial Structure and Dynamics.
    Malik R; Chandra A; Das B; Chandra A
    J Phys Chem B; 2023 Dec; 127(50):10880-10895. PubMed ID: 38055625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of electronic sum frequency generation spectrophotometer to assess the buried interfaces.
    Dhami S; Kumar Y; Pandey R
    Biointerphases; 2023 Jul; 18(4):. PubMed ID: 37417718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differing adsorption behavior of environmentally important cyanophenol isomers at the air-water interface.
    Kido Soule MC; Hore DK; Jaramillo-Fellin DM; Richmond GL
    J Phys Chem B; 2006 Aug; 110(33):16575-83. PubMed ID: 16913792
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Whole-molecule approach for determining orientation at isotropic surfaces by nonlinear vibrational spectroscopy.
    Hore DK; Beaman DK; Parks DH; Richmond GL
    J Phys Chem B; 2005 Sep; 109(35):16846-51. PubMed ID: 16853143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application.
    Ye S; Wei F; Li H; Tian K; Luo Y
    Adv Protein Chem Struct Biol; 2013; 93():213-55. PubMed ID: 24018327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure at the air/water interface in the presence of phenol: a study using heterodyne-detected vibrational sum frequency generation and molecular dynamics simulation.
    Kusaka R; Ishiyama T; Nihonyanagi S; Morita A; Tahara T
    Phys Chem Chem Phys; 2018 Jan; 20(5):3002-3009. PubMed ID: 29075738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.