These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 39087583)

  • 1. Development and Validation of an Explainable Machine Learning Model for Predicting Myocardial Injury After Noncardiac Surgery in Two Centers in China: Retrospective Study.
    Liu C; Zhang K; Yang X; Meng B; Lou J; Liu Y; Cao J; Liu K; Mi W; Li H
    JMIR Aging; 2024 Jul; 7():e54872. PubMed ID: 39087583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple machine learning model for the prediction of acute kidney injury following noncardiac surgery in geriatric patients: a prospective cohort study.
    Peng X; Zhu T; Chen Q; Zhang Y; Zhou R; Li K; Hao X
    BMC Geriatr; 2024 Jun; 24(1):549. PubMed ID: 38918723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of interpretable machine learning models for prediction of acute kidney injury after noncardiac surgery: a retrospective cohort study.
    Sun R; Li S; Wei Y; Hu L; Xu Q; Zhan G; Yan X; He Y; Wang Y; Li X; Luo A; Zhou Z
    Int J Surg; 2024 May; 110(5):2950-2962. PubMed ID: 38445452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Based Prediction of Acute Kidney Injury Following Pediatric Cardiac Surgery: Model Development and Validation Study.
    Luo XQ; Kang YX; Duan SB; Yan P; Song GB; Zhang NY; Yang SK; Li JX; Zhang H
    J Med Internet Res; 2023 Jan; 25():e41142. PubMed ID: 36603200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
    Abraham VM; Booth G; Geiger P; Balazs GC; Goldman A
    Clin Orthop Relat Res; 2022 Nov; 480(11):2137-2145. PubMed ID: 35767804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the 5-Year Risk of Nonalcoholic Fatty Liver Disease Using Machine Learning Models: Prospective Cohort Study.
    Huang G; Jin Q; Mao Y
    J Med Internet Res; 2023 Sep; 25():e46891. PubMed ID: 37698911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpretable machine learning model for early prediction of 28-day mortality in ICU patients with sepsis-induced coagulopathy: development and validation.
    Zhou S; Lu Z; Liu Y; Wang M; Zhou W; Cui X; Zhang J; Xiao W; Hua T; Zhu H; Yang M
    Eur J Med Res; 2024 Jan; 29(1):14. PubMed ID: 38172962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for Predicting Risk and Prognosis of Acute Kidney Disease in Critically Ill Elderly Patients During Hospitalization: Internet-Based and Interpretable Model Study.
    Li M; Han S; Liang F; Hu C; Zhang B; Hou Q; Zhao S
    J Med Internet Res; 2024 May; 26():e51354. PubMed ID: 38691403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
    Anderson AB; Grazal CF; Balazs GC; Potter BK; Dickens JF; Forsberg JA
    Clin Orthop Relat Res; 2020 Jul; 478(7):0-1618. PubMed ID: 32282466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction Model of Osteonecrosis of the Femoral Head After Femoral Neck Fracture: Machine Learning-Based Development and Validation Study.
    Wang H; Wu W; Han C; Zheng J; Cai X; Chang S; Shi J; Xu N; Ai Z
    JMIR Med Inform; 2021 Nov; 9(11):e30079. PubMed ID: 34806984
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Validation of a Machine Learning Model to Identify Patients Before Surgery at High Risk for Postoperative Adverse Events.
    Mahajan A; Esper S; Oo TH; McKibben J; Garver M; Artman J; Klahre C; Ryan J; Sadhasivam S; Holder-Murray J; Marroquin OC
    JAMA Netw Open; 2023 Jul; 6(7):e2322285. PubMed ID: 37418262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Validation of an Explainable Machine Learning Model for Major Complications After Cytoreductive Surgery.
    Deng H; Eftekhari Z; Carlin C; Veerapong J; Fournier KF; Johnston FM; Dineen SP; Powers BD; Hendrix R; Lambert LA; Abbott DE; Vande Walle K; Grotz TE; Patel SH; Clarke CN; Staley CA; Abdel-Misih S; Cloyd JM; Lee B; Fong Y; Raoof M
    JAMA Netw Open; 2022 May; 5(5):e2212930. PubMed ID: 35612856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of the development of acute kidney injury following cardiac surgery by machine learning.
    Tseng PY; Chen YT; Wang CH; Chiu KM; Peng YS; Hsu SP; Chen KL; Yang CY; Lee OK
    Crit Care; 2020 Jul; 24(1):478. PubMed ID: 32736589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An explainable machine learning-based model to predict intensive care unit admission among patients with community-acquired pneumonia and connective tissue disease.
    Huang D; Gong L; Wei C; Wang X; Liang Z
    Respir Res; 2024 Jun; 25(1):246. PubMed ID: 38890628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Incorporating preoperative frailty to assist in early prediction of postoperative pneumonia in elderly patients with hip fractures: an externally validated online interpretable machine learning model.
    Dai A; Liu H; Shen P; Feng Y; Zhong Y; Ma M; Hu Y; Huang K; Chen C; Xia H; Yan L; Si Y; Zou J
    BMC Geriatr; 2024 May; 24(1):472. PubMed ID: 38816811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of Acute Kidney Injury after Extracorporeal Cardiac Surgery (CSA-AKI) by Machine Learning Algorithms.
    Tong Y; Niu X; Liu F
    Heart Surg Forum; 2023 Oct; 26(5):E537-E551. PubMed ID: 37920093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development and validation of explainable machine-learning models for carotid atherosclerosis early screening.
    Yun K; He T; Zhen S; Quan M; Yang X; Man D; Zhang S; Wang W; Han X
    J Transl Med; 2023 May; 21(1):353. PubMed ID: 37246225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multicentre validation of a machine learning model for predicting respiratory failure after noncardiac surgery.
    Yoon HK; Kim HJ; Kim YJ; Lee H; Kim BR; Oh H; Park HP; Lee HC
    Br J Anaesth; 2024 Jun; 132(6):1304-1314. PubMed ID: 38413342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretable machine learning model for early prediction of delirium in elderly patients following intensive care unit admission: a derivation and validation study.
    Tang D; Ma C; Xu Y
    Front Med (Lausanne); 2024; 11():1399848. PubMed ID: 38828233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Explainable Machine Learning Techniques To Predict Amiodarone-Induced Thyroid Dysfunction Risk: Multicenter, Retrospective Study With External Validation.
    Lu YT; Chao HJ; Chiang YC; Chen HY
    J Med Internet Res; 2023 Feb; 25():e43734. PubMed ID: 36749620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.