These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 39087916)
1. Forming Single-Cell-Derived Colon Cancer Organoid Arrays on a Microfluidic Chip for High Throughput Tumor Heterogeneity Analysis. Chen Z; Chen J; Lin D; Kang H; Luo Y; Wang X; Wang L; Liu D ACS Biomater Sci Eng; 2024 Aug; 10(8):5265-5273. PubMed ID: 39087916 [TBL] [Abstract][Full Text] [Related]
2. Gel-Free Single-Cell Culture Arrays on a Microfluidic Chip for Highly Efficient Expansion and Recovery of Colon Cancer Stem Cells. Liu Y; Chen X; Chen J; Luo Y; Chen Z; Lin D; Zhang J; Liu D ACS Biomater Sci Eng; 2022 Aug; 8(8):3623-3632. PubMed ID: 35786837 [TBL] [Abstract][Full Text] [Related]
3. Mammary Tumor Organoid Culture in Non-Adhesive Alginate for Luminal Mechanics and High-Throughput Drug Screening. Fang G; Lu H; Rodriguez de la Fuente L; Law AMK; Lin G; Jin D; Gallego-Ortega D Adv Sci (Weinh); 2021 Nov; 8(21):e2102418. PubMed ID: 34494727 [TBL] [Abstract][Full Text] [Related]
4. Selective expansion of renal cancer stem cells using microfluidic single-cell culture arrays for anticancer drug testing. Wang X; He T; Chen Z; Chen J; Luo Y; Lin D; Li X; Liu D Lab Chip; 2024 Mar; 24(6):1702-1714. PubMed ID: 38321884 [TBL] [Abstract][Full Text] [Related]
5. From Chips-in-Lab to Point-of-Care Live Cell Device: Development of a Microfluidic Device for On-Site Cell Culture and High-Throughput Drug Screening. Feng Y; Che B; Fu J; Sun Y; Ma W; Tian J; Dai L; Jing G; Zhao W; Sun D; Zhang C ACS Biomater Sci Eng; 2024 Aug; 10(8):5399-5408. PubMed ID: 39031055 [TBL] [Abstract][Full Text] [Related]
6. Scaling and automation of a high-throughput single-cell-derived tumor sphere assay chip. Cheng YH; Chen YC; Brien R; Yoon E Lab Chip; 2016 Oct; 16(19):3708-17. PubMed ID: 27510097 [TBL] [Abstract][Full Text] [Related]
7. Microfluidics 3D gel-island chip for single cell isolation and lineage-dependent drug responses study. Zhang Z; Chen YC; Cheng YH; Luan Y; Yoon E Lab Chip; 2016 Jul; 16(13):2504-2512. PubMed ID: 27270563 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic cell chips for high-throughput drug screening. Chi CW; Ahmed AR; Dereli-Korkut Z; Wang S Bioanalysis; 2016 May; 8(9):921-37. PubMed ID: 27071838 [TBL] [Abstract][Full Text] [Related]
9. A high-throughput microfluidic single-cell screening platform capable of selective cell extraction. Kim HS; Devarenne TP; Han A Lab Chip; 2015 Jun; 15(11):2467-75. PubMed ID: 25939721 [TBL] [Abstract][Full Text] [Related]
10. Probing prodrug metabolism and reciprocal toxicity with an integrated and humanized multi-tissue organ-on-a-chip platform. Rajan SAP; Aleman J; Wan M; Pourhabibi Zarandi N; Nzou G; Murphy S; Bishop CE; Sadri-Ardekani H; Shupe T; Atala A; Hall AR; Skardal A Acta Biomater; 2020 Apr; 106():124-135. PubMed ID: 32068138 [TBL] [Abstract][Full Text] [Related]
11. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Fang G; Lu H; Al-Nakashli R; Chapman R; Zhang Y; Ju LA; Lin G; Stenzel MH; Jin D Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34638112 [TBL] [Abstract][Full Text] [Related]
12. Stand-Sit Microchip for High-Throughput, Multiplexed Analysis of Single Cancer Cells. Ramirez L; Herschkowitz JI; Wang J Sci Rep; 2016 Sep; 6():32505. PubMed ID: 27581736 [TBL] [Abstract][Full Text] [Related]
13. Assay Establishment and Validation of a High-Throughput Screening Platform for Three-Dimensional Patient-Derived Colon Cancer Organoid Cultures. Boehnke K; Iversen PW; Schumacher D; Lallena MJ; Haro R; Amat J; Haybaeck J; Liebs S; Lange M; Schäfer R; Regenbrecht CR; Reinhard C; Velasco JA J Biomol Screen; 2016 Oct; 21(9):931-41. PubMed ID: 27233291 [TBL] [Abstract][Full Text] [Related]
14. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes. Nakazawa K; Yoshiura Y; Koga H; Sakai Y J Biosci Bioeng; 2013 Nov; 116(5):628-33. PubMed ID: 23735328 [TBL] [Abstract][Full Text] [Related]
15. Microgel Single-Cell Culture Arrays on a Microfluidic Chip for Selective Expansion and Recovery of Colorectal Cancer Stem Cells. Lin D; Chen X; Liu Y; Lin Z; Luo Y; Fu M; Yang N; Liu D; Cao J Anal Chem; 2021 Sep; 93(37):12628-12638. PubMed ID: 34495647 [TBL] [Abstract][Full Text] [Related]
16. Single cell dual adherent-suspension co-culture micro-environment for studying tumor-stromal interactions with functionally selected cancer stem-like cells. Chen YC; Zhang Z; Fouladdel S; Deol Y; Ingram PN; McDermott SP; Azizi E; Wicha MS; Yoon E Lab Chip; 2016 Aug; 16(15):2935-45. PubMed ID: 27381658 [TBL] [Abstract][Full Text] [Related]
17. A photoclickable peptide microarray platform for facile and rapid screening of 3-D tissue microenvironments. Sharma S; Floren M; Ding Y; Stenmark KR; Tan W; Bryant SJ Biomaterials; 2017 Oct; 143():17-28. PubMed ID: 28756193 [TBL] [Abstract][Full Text] [Related]
18. Colon cancer organoids using monoclonal organoids established in four different lesions of one cancer patient reveal tumor heterogeneity and different real-time responsiveness to anti-cancer drugs. Song MH; Park JW; Kim MJ; Shin YK; Kim SC; Jeong SY; Ku JL Biomed Pharmacother; 2022 Aug; 152():113260. PubMed ID: 35691158 [TBL] [Abstract][Full Text] [Related]
19. High-throughput drug screening of fine-needle aspiration-derived cancer organoids. Bergdorf K; Phifer C; Bharti V; Westover D; Bauer J; Vilgelm A; Lee E; Weiss V STAR Protoc; 2020 Dec; 1(3):100212. PubMed ID: 33377106 [TBL] [Abstract][Full Text] [Related]