These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 39088308)

  • 1. Surface Enhanced Nonlinear Raman Processes for Advanced Vibrational Probing.
    Kneipp J; Kneipp K
    ACS Nano; 2024 Aug; 18(32):20851-20860. PubMed ID: 39088308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface enhanced hyper Raman scattering (SEHRS) and its applications.
    Madzharova F; Heiner Z; Kneipp J
    Chem Soc Rev; 2017 Jul; 46(13):3980-3999. PubMed ID: 28530726
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity.
    Lis D; Cecchet F
    Beilstein J Nanotechnol; 2014; 5():2275-92. PubMed ID: 25551056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmon-enhanced coherent anti-stokes Raman scattering vs plasmon-enhanced stimulated Raman scattering: Comparison of line shape and enhancement factor.
    Zong C; Xie Y; Zhang M; Huang Y; Yang C; Cheng JX
    J Chem Phys; 2021 Jan; 154(3):034201. PubMed ID: 33499625
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast vibrational imaging of single cells and tissues by stimulated Raman scattering microscopy.
    Zhang D; Wang P; Slipchenko MN; Cheng JX
    Acc Chem Res; 2014 Aug; 47(8):2282-90. PubMed ID: 24871269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering.
    Kneipp J; Kneipp H; Kneipp K
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17149-53. PubMed ID: 17088534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Excitation Conditions for Surface-Enhanced Hyper Raman Scattering With Biocompatible Gold Nanosubstrates.
    Dusa A; Madzharova F; Kneipp J
    Front Chem; 2021; 9():680905. PubMed ID: 34079791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces.
    Steuwe C; Kaminski CF; Baumberg JJ; Mahajan S
    Nano Lett; 2011 Dec; 11(12):5339-43. PubMed ID: 22074256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially Resolving the Enhancement Effect in Surface-Enhanced Coherent Anti-Stokes Raman Scattering by Plasmonic Doppler Gratings.
    Ouyang L; Meyer-Zedler T; See KM; Chen WL; Lin FC; Akimov D; Ehtesabi S; Richter M; Schmitt M; Chang YM; Gräfe S; Popp J; Huang JS
    ACS Nano; 2021 Jan; 15(1):809-818. PubMed ID: 33356140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters.
    Kneipp K; Kneipp H
    Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring Excited State Landscapes with Surface Enhanced Hyper-Raman Spectroscopy.
    Chandran A; Camden JP
    ACS Nano; 2024 Aug; 18(32):20827-20834. PubMed ID: 39088723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-Enhanced Hyper Raman Spectra of Aromatic Thiols on Gold and Silver Nanoparticles.
    Madzharova F; Heiner Z; Kneipp J
    J Phys Chem C Nanomater Interfaces; 2020 Mar; 124(11):6233-6241. PubMed ID: 32395194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of the surface-enhanced coherent anti-Stokes Raman scattering (SECARS) due to the 1574 cm(-1) surface-enhanced Raman scattering (SERS) mode of benzenethiol using low-power (<20 mW) CW diode lasers.
    Aggarwal RL; Farrar LW; Greeneltch NG; Van Duyne RP; Polla DL
    Appl Spectrosc; 2013 Feb; 67(2):132-5. PubMed ID: 23622430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced hyper Raman hyperspectral imaging and probing in animal cells.
    Heiner Z; Gühlke M; Živanović V; Madzharova F; Kneipp J
    Nanoscale; 2017 Jun; 9(23):8024-8032. PubMed ID: 28574069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing Molecular Hyperpolarizability for Trace Analysis: A Surface-Enhanced Hyper-Raman Scattering Study of Uranyl Ion.
    Trujillo MJ; Camden JP
    ACS Omega; 2018 Jun; 3(6):6660-6664. PubMed ID: 31458840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman Scattering-Based Biosensing: New Prospects and Opportunities.
    Serebrennikova KV; Berlina AN; Sotnikov DV; Zherdev AV; Dzantiev BB
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coherent anti-Stokes Raman scattering enhancement of thymine adsorbed on graphene oxide.
    Dovbeshko G; Fesenko O; Dementjev A; Karpicz R; Fedorov V; Posudievsky OY
    Nanoscale Res Lett; 2014; 9(1):263. PubMed ID: 24948887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
    Gruenke NL; Cardinal MF; McAnally MO; Frontiera RR; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2016 Apr; 45(8):2263-90. PubMed ID: 26848784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multivariate Imaging for Fast Evaluation of In Situ Dark Field Microscopy Hyperspectral Data.
    Diehn S; Schlaad H; Kneipp J
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.