These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Synchronization transition from chaos to limit cycle oscillations when a locally coupled chaotic oscillator grid is coupled globally to another chaotic oscillator. Godavarthi V; Kasthuri P; Mondal S; Sujith RI; Marwan N; Kurths J Chaos; 2020 Mar; 30(3):033121. PubMed ID: 32237762 [TBL] [Abstract][Full Text] [Related]
3. Low-order modeling of the mutual synchronization between two turbulent thermoacoustic oscillators. Guan Y; Moon K; Kim KT; Li LKB Phys Rev E; 2021 Aug; 104(2-1):024216. PubMed ID: 34525572 [TBL] [Abstract][Full Text] [Related]
4. Steady-state statistics, emergent patterns and intermittent energy transfer in a ring of oscillators. Pedergnana T; Noiray N Nonlinear Dyn; 2022; 108(2):1133-1163. PubMed ID: 35465412 [TBL] [Abstract][Full Text] [Related]
5. Volterra-series approach to stochastic nonlinear dynamics: Linear response of the Van der Pol oscillator driven by white noise. Belousov R; Berger F; Hudspeth AJ Phys Rev E; 2020 Sep; 102(3-1):032209. PubMed ID: 33075951 [TBL] [Abstract][Full Text] [Related]
6. Electro-optic delay oscillator with nonlocal nonlinearity: Optical phase dynamics, chaos, and synchronization. Lavrov R; Peil M; Jacquot M; Larger L; Udaltsov V; Dudley J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026207. PubMed ID: 19792231 [TBL] [Abstract][Full Text] [Related]
7. Mean-field model of synchronization for open-loop, swirl controlled thermoacoustic system. Singh S; Kumar Dutta A; Dhadphale JM; Roy A; Sujith RI; Chaudhuri S Chaos; 2023 Apr; 33(4):. PubMed ID: 37097956 [TBL] [Abstract][Full Text] [Related]
8. Mixed-mode oscillations from a constrained extended Bonhoeffer-van der Pol oscillator with a diode. Inaba N; Kousaka T; Tsubone T; Okazaki H; Ito H Chaos; 2021 Jul; 31(7):073133. PubMed ID: 34340338 [TBL] [Abstract][Full Text] [Related]
9. Spatiotemporal patterns corresponding to phase synchronization and generalized synchronization states of thermoacoustic instability. Pawar SA; Raghunath MP; K Valappil R; Krishnan A; Manoj K; Sujith RI Chaos; 2024 May; 34(5):. PubMed ID: 38717395 [TBL] [Abstract][Full Text] [Related]
10. Dynamical system of a time-delayed ϕ Moatimid GM; Amer TS Sci Rep; 2023 Jul; 13(1):11942. PubMed ID: 37488150 [TBL] [Abstract][Full Text] [Related]
11. Optical solitons in media with focusing and defocusing saturable nonlinearity and a parity-time-symmetric external potential. Li P; Mihalache D; Malomed BA Philos Trans A Math Phys Eng Sci; 2018 Jul; 376(2124):. PubMed ID: 29891499 [TBL] [Abstract][Full Text] [Related]
12. Synchronization of Van der Pol oscillators in a thermal bath. Ruan D; Liu J; Wu C Phys Rev E; 2023 Aug; 108(2-1):024207. PubMed ID: 37723705 [TBL] [Abstract][Full Text] [Related]
13. Neural ODE to model and prognose thermoacoustic instability. Dhadphale JM; Unni VR; Saha A; Sujith RI Chaos; 2022 Jan; 32(1):013131. PubMed ID: 35105133 [TBL] [Abstract][Full Text] [Related]
14. Statistical mechanics of a discrete Schrödinger equation with saturable nonlinearity. Samuelsen MR; Khare A; Saxena A; Rasmussen KØ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):044901. PubMed ID: 23679552 [TBL] [Abstract][Full Text] [Related]
15. A generalization of the van-der-Pol oscillator underlies active signal amplification in Drosophila hearing. Stoop R; Kern A; Göpfert MC; Smirnov DA; Dikanev TV; Bezrucko BP Eur Biophys J; 2006 Aug; 35(6):511-6. PubMed ID: 16612585 [TBL] [Abstract][Full Text] [Related]
16. Driven generalized quantum Rayleigh-van der Pol oscillators: Phase localization and spectral response. Sudler AJ; Talukdar J; Blume D Phys Rev E; 2024 May; 109(5-1):054207. PubMed ID: 38907472 [TBL] [Abstract][Full Text] [Related]
17. Robust identification of harmonic oscillator parameters using the adjoint Fokker-Planck equation. Boujo E; Noiray N Proc Math Phys Eng Sci; 2017 Apr; 473(2200):20160894. PubMed ID: 28484333 [TBL] [Abstract][Full Text] [Related]
19. Pinned modes in lossy lattices with local gain and nonlinearity. Malomed BA; Ding E; Chow KW; Lai SK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036608. PubMed ID: 23031046 [TBL] [Abstract][Full Text] [Related]