These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 39088465)
41. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Wang X; Piao S; Ciais P; Friedlingstein P; Myneni RB; Cox P; Heimann M; Miller J; Peng S; Wang T; Yang H; Chen A Nature; 2014 Feb; 506(7487):212-5. PubMed ID: 24463514 [TBL] [Abstract][Full Text] [Related]
42. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO2 trends. Piao S; Sitch S; Ciais P; Friedlingstein P; Peylin P; Wang X; Ahlström A; Anav A; Canadell JG; Cong N; Huntingford C; Jung M; Levis S; Levy PE; Li J; Lin X; Lomas MR; Lu M; Luo Y; Ma Y; Myneni RB; Poulter B; Sun Z; Wang T; Viovy N; Zaehle S; Zeng N Glob Chang Biol; 2013 Jul; 19(7):2117-32. PubMed ID: 23504870 [TBL] [Abstract][Full Text] [Related]
43. Decrease in CO2 efflux from northern hardwater lakes with increasing atmospheric warming. Finlay K; Vogt RJ; Bogard MJ; Wissel B; Tutolo BM; Simpson GL; Leavitt PR Nature; 2015 Mar; 519(7542):215-8. PubMed ID: 25731167 [TBL] [Abstract][Full Text] [Related]
44. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2. Friend AD; Lucht W; Rademacher TT; Keribin R; Betts R; Cadule P; Ciais P; Clark DB; Dankers R; Falloon PD; Ito A; Kahana R; Kleidon A; Lomas MR; Nishina K; Ostberg S; Pavlick R; Peylin P; Schaphoff S; Vuichard N; Warszawski L; Wiltshire A; Woodward FI Proc Natl Acad Sci U S A; 2014 Mar; 111(9):3280-5. PubMed ID: 24344265 [TBL] [Abstract][Full Text] [Related]
45. Sensitivity of atmospheric CO Humphrey V; Zscheischler J; Ciais P; Gudmundsson L; Sitch S; Seneviratne SI Nature; 2018 Aug; 560(7720):628-631. PubMed ID: 30158603 [TBL] [Abstract][Full Text] [Related]
46. Simulated effect of calcification feedback on atmospheric CO2 and ocean acidification. Zhang H; Cao L Sci Rep; 2016 Feb; 6():20284. PubMed ID: 26838480 [TBL] [Abstract][Full Text] [Related]
47. Chapter 1. Impacts of the oceans on climate change. Reid PC; Fischer AC; Lewis-Brown E; Meredith MP; Sparrow M; Andersson AJ; Antia A; Bates NR; Bathmann U; Beaugrand G; Brix H; Dye S; Edwards M; Furevik T; Gangstø R; Hátún H; Hopcroft RR; Kendall M; Kasten S; Keeling R; Le Quéré C; Mackenzie FT; Malin G; Mauritzen C; Olafsson J; Paull C; Rignot E; Shimada K; Vogt M; Wallace C; Wang Z; Washington R Adv Mar Biol; 2009; 56():1-150. PubMed ID: 19895974 [TBL] [Abstract][Full Text] [Related]
48. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Poulter B; Frank D; Ciais P; Myneni RB; Andela N; Bi J; Broquet G; Canadell JG; Chevallier F; Liu YY; Running SW; Sitch S; van der Werf GR Nature; 2014 May; 509(7502):600-3. PubMed ID: 24847888 [TBL] [Abstract][Full Text] [Related]
50. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Sitch S; Cox PM; Collins WJ; Huntingford C Nature; 2007 Aug; 448(7155):791-4. PubMed ID: 17653194 [TBL] [Abstract][Full Text] [Related]
51. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions. Zeebe RE Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13739-44. PubMed ID: 23918402 [TBL] [Abstract][Full Text] [Related]
52. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO Wenzel S; Cox PM; Eyring V; Friedlingstein P Nature; 2016 Oct; 538(7626):499-501. PubMed ID: 27680704 [TBL] [Abstract][Full Text] [Related]
53. The role of the European small ruminant dairy sector in stabilising global temperatures: lessons from GWP* warming-equivalent emission metrics. Del Prado A; Manzano P; Pardo G J Dairy Res; 2021 Feb; 88(1):8-15. PubMed ID: 33663634 [TBL] [Abstract][Full Text] [Related]
54. The global pyrogenic carbon cycle and its impact on the level of atmospheric CO Landry JS; Matthews HD Glob Chang Biol; 2017 Aug; 23(8):3205-3218. PubMed ID: 27992954 [TBL] [Abstract][Full Text] [Related]
56. Origin of volatile organic compound emissions from subarctic tundra under global warming. Ghirardo A; Lindstein F; Koch K; Buegger F; Schloter M; Albert A; Michelsen A; Winkler JB; Schnitzler JP; Rinnan R Glob Chang Biol; 2020 Mar; 26(3):1908-1925. PubMed ID: 31957145 [TBL] [Abstract][Full Text] [Related]
57. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Obrist D; Kirk JL; Zhang L; Sunderland EM; Jiskra M; Selin NE Ambio; 2018 Mar; 47(2):116-140. PubMed ID: 29388126 [TBL] [Abstract][Full Text] [Related]
58. Trade-offs in using European forests to meet climate objectives. Luyssaert S; Marie G; Valade A; Chen YY; Njakou Djomo S; Ryder J; Otto J; Naudts K; Lansø AS; Ghattas J; McGrath MJ Nature; 2018 Oct; 562(7726):259-262. PubMed ID: 30305744 [TBL] [Abstract][Full Text] [Related]
59. A radiative forcing analysis of tropical peatlands before and after their conversion to agricultural plantations. Dommain R; Frolking S; Jeltsch-Thömmes A; Joos F; Couwenberg J; Glaser PH Glob Chang Biol; 2018 Nov; 24(11):5518-5533. PubMed ID: 30007100 [TBL] [Abstract][Full Text] [Related]
60. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies. Ming T; de Richter R; Shen S; Caillol S Environ Sci Pollut Res Int; 2016 Apr; 23(7):6119-38. PubMed ID: 26805926 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]