These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 39088504)

  • 1. High-Performance Method and Architecture for Attention Computation in DNN Inference.
    Cheng Q; Hu X; Xiao H; Zhou Y; Duan S
    IEEE Trans Biomed Circuits Syst; 2024 Aug; PP():. PubMed ID: 39088504
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SCA: Search-Based Computing Hardware Architecture with Precision Scalable and Computation Reconfigurable Scheme.
    Chang L; Zhao X; Zhou J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binary Neural Networks in FPGAs: Architectures, Tool Flows and Hardware Comparisons.
    Su Y; Seng KP; Ang LM; Smith J
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient Resource-Aware Convolutional Neural Architecture Search for Edge Computing with Pareto-Bayesian Optimization.
    Yang Z; Zhang S; Li R; Li C; Wang M; Wang D; Zhang M
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SRAM-Based CIM Architecture Design for Event Detection.
    Sulaiman MBG; Lin JY; Li JB; Shih CM; Juang KC; Lu CC
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NeuroSim Simulator for Compute-in-Memory Hardware Accelerator: Validation and Benchmark.
    Lu A; Peng X; Li W; Jiang H; Yu S
    Front Artif Intell; 2021; 4():659060. PubMed ID: 34179768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk-Switching Memristor-Based Compute-In-Memory Module for Deep Neural Network Training.
    Wu Y; Wang Q; Wang Z; Wang X; Ayyagari B; Krishnan S; Chudzik M; Lu WD
    Adv Mater; 2023 Nov; 35(46):e2305465. PubMed ID: 37747134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An FPGA implementation of Bayesian inference with spiking neural networks.
    Li H; Wan B; Fang Y; Li Q; Liu JK; An L
    Front Neurosci; 2023; 17():1291051. PubMed ID: 38249589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SmartDeal: Remodeling Deep Network Weights for Efficient Inference and Training.
    Chen X; Zhao Y; Wang Y; Xu P; You H; Li C; Fu Y; Lin Y; Wang Z
    IEEE Trans Neural Netw Learn Syst; 2023 Oct; 34(10):7099-7113. PubMed ID: 35235521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resource-constrained FPGA/DNN co-design.
    Zhang Z; Kouzani AZ
    Neural Comput Appl; 2021; 33(21):14741-14751. PubMed ID: 34025038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Complexity Gradient Computation Techniques to Accelerate Deep Neural Network Training.
    Shin D; Kim G; Jo J; Park J
    IEEE Trans Neural Netw Learn Syst; 2023 Sep; 34(9):5745-5759. PubMed ID: 34890336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling.
    Dorzhigulov A; Saxena V
    Front Neurosci; 2023; 17():1177592. PubMed ID: 37534034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A compute-in-memory chip based on resistive random-access memory.
    Wan W; Kubendran R; Schaefer C; Eryilmaz SB; Zhang W; Wu D; Deiss S; Raina P; Qian H; Gao B; Joshi S; Wu H; Wong HP; Cauwenberghs G
    Nature; 2022 Aug; 608(7923):504-512. PubMed ID: 35978128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantization Friendly MobileNet (QF-MobileNet) Architecture for Vision Based Applications on Embedded Platforms.
    Kulkarni U; S M M; Gurlahosur SV; Bhogar G
    Neural Netw; 2021 Apr; 136():28-39. PubMed ID: 33429131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Custom Hardware Architectures for Deep Learning on Portable Devices: A Review.
    Zaman KS; Reaz MBI; Md Ali SH; Bakar AAA; Chowdhury MEH
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6068-6088. PubMed ID: 34086580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Learning automata based energy-efficient AI hardware design for IoT applications.
    Wheeldon A; Shafik R; Rahman T; Lei J; Yakovlev A; Granmo OC
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2182):20190593. PubMed ID: 32921236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Offloading in Mobile Edge with Comprehensive and Energy Efficient Cost Function: A Deep Learning Approach.
    Abbas ZH; Ali Z; Abbas G; Jiao L; Bilal M; Suh DY; Piran MJ
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SalvageDNN: salvaging deep neural network accelerators with permanent faults through saliency-driven fault-aware mapping.
    Abdullah Hanif M; Shafique M
    Philos Trans A Math Phys Eng Sci; 2020 Feb; 378(2164):20190164. PubMed ID: 31865875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compute in-Memory with Non-Volatile Elements for Neural Networks: A Review from a Co-Design Perspective.
    Haensch W; Raghunathan A; Roy K; Chakrabarti B; Phatak CM; Wang C; Guha S
    Adv Mater; 2023 Sep; 35(37):e2204944. PubMed ID: 36579797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.