These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 39088790)
1. Capitalizing on the Iodometric Reaction for Energetic Aqueous Energy Storage. Sun H; Li M; Zhu J; Ni J; Li L ACS Nano; 2024 Aug; 18(32):21472-21479. PubMed ID: 39088790 [TBL] [Abstract][Full Text] [Related]
3. Six-Electron-Redox Iodine Electrodes for High-Energy Aqueous Batteries. Bi S; Wang H; Zhang Y; Yang M; Li Q; Tian J; Niu Z Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312982. PubMed ID: 37861096 [TBL] [Abstract][Full Text] [Related]
4. Establishing High-Performance Quasi-Solid Zn/I Shang W; Zhu J; Liu Y; Kang L; Liu S; Huang B; Song J; Li X; Jiang F; Du W; Gao Y; Luo H ACS Appl Mater Interfaces; 2021 Jun; 13(21):24756-24764. PubMed ID: 34004110 [TBL] [Abstract][Full Text] [Related]
5. Boosting Zn||I Shang W; Li Q; Jiang F; Huang B; Song J; Yun S; Liu X; Kimura H; Liu J; Kang L Nanomicro Lett; 2022 Mar; 14(1):82. PubMed ID: 35334003 [TBL] [Abstract][Full Text] [Related]
6. An Energetic CuS-Cu Battery System Based on CuS Nanosheet Arrays. Wang Y; Chao D; Wang Z; Ni J; Li L ACS Nano; 2021 Mar; 15(3):5420-5427. PubMed ID: 33709698 [TBL] [Abstract][Full Text] [Related]
7. A Metal-Organic Framework as a Multifunctional Ionic Sieve Membrane for Long-Life Aqueous Zinc-Iodide Batteries. Yang H; Qiao Y; Chang Z; Deng H; He P; Zhou H Adv Mater; 2020 Sep; 32(38):e2004240. PubMed ID: 32797719 [TBL] [Abstract][Full Text] [Related]
8. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Zhao Y; Hong M; Bonnet Mercier N; Yu G; Choi HC; Byon HR Nano Lett; 2014 Feb; 14(2):1085-92. PubMed ID: 24475968 [TBL] [Abstract][Full Text] [Related]
9. Synergistically regulating the separator pore structure and surface property toward dendrite-free and high-performance aqueous zinc-ion batteries. Zhang Y; Yang S; Zhu YJ; Li D; Cheng L; Li H; Wang Z J Colloid Interface Sci; 2024 Feb; 656():566-576. PubMed ID: 38011775 [TBL] [Abstract][Full Text] [Related]
10. Ultrastable Electrolytic Zn-I Wang Y; Jin X; Xiong J; Zhu Q; Li Q; Wang R; Li J; Fan Y; Zhao Y; Sun X Adv Mater; 2024 Jul; 36(30):e2404093. PubMed ID: 38717804 [TBL] [Abstract][Full Text] [Related]
11. Fe, Co-codoped layered double hydroxide nanosheet arrays derived from zeolitic imidazolate frameworks for high-performance aqueous hybrid supercapacitors and Zn-Ni batteries. Wang H; He Q; Zhan F; Chen L J Colloid Interface Sci; 2023 Jan; 630(Pt A):286-296. PubMed ID: 36244101 [TBL] [Abstract][Full Text] [Related]
12. High-Energy Aqueous/Organic Hybrid Batteries Enabled by Cu Bi S; Zhang Y; Wang H; Tian J; Niu Z Angew Chem Int Ed Engl; 2023 Dec; 62(49):e202312172. PubMed ID: 37853603 [TBL] [Abstract][Full Text] [Related]
13. Polyiodide Confinement by Starch Enables Shuttle-Free Zn-Iodine Batteries. Zhang SJ; Hao J; Li H; Zhang PF; Yin ZW; Li YY; Zhang B; Lin Z; Qiao SZ Adv Mater; 2022 Jun; 34(23):e2201716. PubMed ID: 35435291 [TBL] [Abstract][Full Text] [Related]
14. Transition-metal ions intercalation chemistry enabled the manganese oxides-based cathode with enhanced capacity and cycle life for high-performance aqueous zinc-ion batteries. Zhao H; Wang L; Li M RSC Adv; 2024 Mar; 14(15):10191-10198. PubMed ID: 38544940 [TBL] [Abstract][Full Text] [Related]
15. A stable and high-energy aqueous aluminum based battery. Tao R; Gao C; Xie E; Wang B; Lu B Chem Sci; 2022 Aug; 13(34):10066-10073. PubMed ID: 36128225 [TBL] [Abstract][Full Text] [Related]
16. Boosting Cathode Activity and Anode Stability of Zn-S Batteries in Aqueous Media Through Cosolvent-Catalyst Synergy. Yang M; Yan Z; Xiao J; Xin W; Zhang L; Peng H; Geng Y; Li J; Wang Y; Liu L; Zhu Z Angew Chem Int Ed Engl; 2022 Oct; 61(42):e202212666. PubMed ID: 36056534 [TBL] [Abstract][Full Text] [Related]
17. High performance rechargeable aqueous zinc-iodine batteries via a double iodine species fixation strategy with mesoporous carbon and modified separator. Hou Y; Kong F; Wang Z; Ren M; Qiao C; Liu W; Yao J; Zhang C; Zhao H J Colloid Interface Sci; 2023 Jan; 629(Pt B):279-287. PubMed ID: 36155923 [TBL] [Abstract][Full Text] [Related]
18. Precipitated Iodine Cathode Enabled by Trifluoromethanesulfonate Oxidation for Cathode/Electrolyte Mutualistic Aqueous Zn-I Batteries. Zhang K; Yu Q; Sun J; Tie Z; Jin Z Adv Mater; 2024 Feb; 36(6):e2309838. PubMed ID: 37949441 [TBL] [Abstract][Full Text] [Related]
19. A bio-based functional separator enables dendrite-free anodes in aqueous zinc-ion batteries. Zhang H; Li J; Ren H; Wang J; Gong Y; Wang B; Wang D; Liu H; Dou S iScience; 2024 Jul; 27(7):110237. PubMed ID: 38993664 [TBL] [Abstract][Full Text] [Related]
20. Quinone Electrodes for Alkali-Acid Hybrid Batteries. Li Y; Lu Y; Ni Y; Zheng S; Yan Z; Zhang K; Zhao Q; Chen J J Am Chem Soc; 2022 May; 144(18):8066-8072. PubMed ID: 35481353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]