These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 39088878)
1. Advanced electrochemical membrane technologies for near-complete resource recovery and zero-discharge of urine: Performance optimization and evaluation. Yang HR; Liu Y; Hu SJ; Zhang MY; Wu D; Zheng L; Zhong LJ; Wang C; Liu H Water Res; 2024 Oct; 263():122175. PubMed ID: 39088878 [TBL] [Abstract][Full Text] [Related]
2. Technologies for the recovery of nutrients, water and energy from human urine: A review. Patel A; Mungray AA; Mungray AK Chemosphere; 2020 Nov; 259():127372. PubMed ID: 32599379 [TBL] [Abstract][Full Text] [Related]
3. Ionic resource recovery for carbon neutral papermaking wastewater reclamation by a chemical self-sufficiency zero liquid discharge system. Qiu Y; Wu S; Xia L; Ren LF; Shao J; Shen J; Yang Z; Tang CY; Wu C; Van der Bruggen B; Zhao Y Water Res; 2023 Feb; 229():119451. PubMed ID: 36493701 [TBL] [Abstract][Full Text] [Related]
4. Life-cycle assessment and techno-economic evaluation of the value chain in nutrient recovery from wastewater treatment plants for agricultural application. Mayor Á; Vinardell S; Ganesan K; Bacardí C; Cortina JL; Valderrama C Sci Total Environ; 2023 Sep; 892():164452. PubMed ID: 37245830 [TBL] [Abstract][Full Text] [Related]
5. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management. Ishii SK; Boyer TH Water Res; 2015 Aug; 79():88-103. PubMed ID: 25973581 [TBL] [Abstract][Full Text] [Related]
6. Bipolar membrane electrodialysis for generation of hydrochloric acid and ammonia from simulated ammonium chloride wastewater. Li Y; Shi S; Cao H; Wu X; Zhao Z; Wang L Water Res; 2016 Feb; 89():201-9. PubMed ID: 26674548 [TBL] [Abstract][Full Text] [Related]
7. Advancing sustainable wastewater management: A comprehensive review of nutrient recovery products and their applications. Śniatała B; Al-Hazmi HE; Sobotka D; Zhai J; Mąkinia J Sci Total Environ; 2024 Aug; 937():173446. PubMed ID: 38788940 [TBL] [Abstract][Full Text] [Related]
8. Macro-nutrients recovery from liquid waste as a sustainable resource for production of recovered mineral fertilizer: Uncovering alternative options to sustain global food security cost-effectively. Sniatala B; Kurniawan TA; Sobotka D; Makinia J; Othman MHD Sci Total Environ; 2023 Jan; 856(Pt 2):159283. PubMed ID: 36208738 [TBL] [Abstract][Full Text] [Related]
9. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Xie M; Shon HK; Gray SR; Elimelech M Water Res; 2016 Feb; 89():210-21. PubMed ID: 26674549 [TBL] [Abstract][Full Text] [Related]
10. Recovery of phosphorus and nitrogen from human urine by struvite precipitation, air stripping and acid scrubbing: A pilot study. Wei SP; van Rossum F; van de Pol GJ; Winkler MH Chemosphere; 2018 Dec; 212():1030-1037. PubMed ID: 30286532 [TBL] [Abstract][Full Text] [Related]
12. Nutrient recovery from wastewater through pilot scale electrodialysis. Ward AJ; Arola K; Thompson Brewster E; Mehta CM; Batstone DJ Water Res; 2018 May; 135():57-65. PubMed ID: 29454922 [TBL] [Abstract][Full Text] [Related]
13. Reverse osmosis brine for phosphorus recovery from source separated urine. Tian X; Wang G; Guan D; Li J; Wang A; Li J; Yu Z; Chen Y; Zhang Z Chemosphere; 2016 Dec; 165():202-210. PubMed ID: 27654223 [TBL] [Abstract][Full Text] [Related]
14. Membrane-based technology in water and resources recovery from the perspective of water social circulation: A review. Wang H; Yang J; Zhang H; Zhao J; Liu H; Wang J; Li G; Liang H Sci Total Environ; 2024 Jan; 908():168277. PubMed ID: 37939956 [TBL] [Abstract][Full Text] [Related]
15. CO Shashvatt U; Benoit J; Aris H; Blaney L Water Res; 2018 Oct; 143():19-27. PubMed ID: 29935400 [TBL] [Abstract][Full Text] [Related]
16. Advanced membrane-based high-value metal recovery from wastewater. Gebreslassie G; Desta HG; Dong Y; Zheng X; Zhao M; Lin B Water Res; 2024 Nov; 265():122122. PubMed ID: 39128331 [TBL] [Abstract][Full Text] [Related]
17. Increasing resource circularity in wastewater treatment: Environmental implications of technological upgrades. Rufí-Salís M; Petit-Boix A; Leipold S; Villalba G; Rieradevall J; Moliné E; Gabarrell X; Carrera J; Suárez-Ojeda ME Sci Total Environ; 2022 Sep; 838(Pt 3):156422. PubMed ID: 35662600 [TBL] [Abstract][Full Text] [Related]
18. Recovery of Fluoride-Rich and Silica-Rich Wastewaters as Valuable Resources: A Resource Capture Ultrafiltration-Bipolar Membrane Electrodialysis-Based Closed-Loop Process. Qiu Y; Ren LF; Xia L; Zhong C; Shao J; Zhao Y; Van der Bruggen B Environ Sci Technol; 2022 Nov; 56(22):16221-16229. PubMed ID: 36287592 [TBL] [Abstract][Full Text] [Related]
19. Bipolar Membrane Electrodialysis for Ammonia Recovery from Synthetic Urine: Experiments, Modeling, and Performance Analysis. Li Y; Wang R; Shi S; Cao H; Yip NY; Lin S Environ Sci Technol; 2021 Nov; 55(21):14886-14896. PubMed ID: 34637289 [TBL] [Abstract][Full Text] [Related]
20. A stacked transmembrane electro-chemisorption system connected by hydrophobic gas permeable membranes for on-site utilization of authigenic acid and base to enhance ammonia recovery from wastewater. Deng B; Zhang J; Deng R; Wang Z; Zhang Z; Zhang N; Cao Z; Zhang Q; Wei G; Xia S Water Res; 2024 Jun; 257():121708. PubMed ID: 38723355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]