These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 39089121)
1. Multi-objective double layer water optimal allocation and scheduling framework combing the integrated surface water - groundwater model. Li Z; Wang Y; Chang J; Guo A; Wang L; Niu C; Hu R; He B Water Res; 2024 Sep; 262():122141. PubMed ID: 39089121 [TBL] [Abstract][Full Text] [Related]
2. Assessing environmental water requirement for groundwater-dependent vegetation in arid inland basins by combining the copula joint distribution function and the dual objective optimization: An application to the Turpan Basin, China. Huang F; Ochoa CG; Chen X Sci Total Environ; 2021 Dec; 799():149323. PubMed ID: 34388881 [TBL] [Abstract][Full Text] [Related]
3. Optimal Allocation of Water Resources and Eco-Compensation Mechanism Model Based on the Interval-Fuzzy Two-Stage Stochastic Programming Method for Tingjiang River. Hao N; Sun P; Yang L; Qiu Y; Chen Y; Zhao W Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010407 [TBL] [Abstract][Full Text] [Related]
4. Ion migration process and influencing factors in inland river basin of arid area in China: a case study of Shiyang River Basin. Ma H; Zhu G; Zhang Y; Sang L; Wan Q; Zhang Z; Xu Y; Qiu D Environ Sci Pollut Res Int; 2021 Oct; 28(40):56305-56318. PubMed ID: 34053041 [TBL] [Abstract][Full Text] [Related]
5. Rehabilitating China's largest inland river. Li Y; Chen Y; Zhang Y; Xia Y Conserv Biol; 2009 Jun; 23(3):531-6. PubMed ID: 22748091 [TBL] [Abstract][Full Text] [Related]
6. Responses of two dominant desert plant species to the changes in groundwater depth in hinterland natural oasis, Tarim Basin. Imin B; Dai Y; Shi Q; Guo Y; Li H; Nijat M Ecol Evol; 2021 Jul; 11(14):9460-9471. PubMed ID: 34306635 [TBL] [Abstract][Full Text] [Related]
7. [Hydrochemical Characteristics and Factors of Surface Water and Groundwater in the Upper Yongding River Basin]. Kong XL; Yang YH; Cao B; Wang YX; Pei HW; Shen YJ Huan Jing Ke Xue; 2021 Sep; 42(9):4202-4210. PubMed ID: 34414718 [TBL] [Abstract][Full Text] [Related]
8. Assessment of the hydrogeochemistry and groundwater quality of the Tarim River Basin in an extreme arid region, NW China. Xiao J; Jin Z; Wang J Environ Manage; 2014 Jan; 53(1):135-46. PubMed ID: 24221557 [TBL] [Abstract][Full Text] [Related]
9. A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan. Zhang C; Yue Q; Guo P Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31142013 [TBL] [Abstract][Full Text] [Related]
10. Simulation-Optimization for Conjunctive Water Resources Management and Optimal Crop Planning in Kushabhadra-Bhargavi River Delta of Eastern India. Jha MK; Peralta RC; Sahoo S Int J Environ Res Public Health; 2020 May; 17(10):. PubMed ID: 32443477 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the ecological protective effect of the "large basin" comprehensive management system in the Tarim River basin, China. Ling H; Guo B; Zhang G; Xu H; Deng X Sci Total Environ; 2019 Feb; 650(Pt 2):1696-1706. PubMed ID: 30273729 [TBL] [Abstract][Full Text] [Related]
12. Evolution of Groundwater in Yinchuan Oasis at the Upper Reaches of the Yellow River after Water-Saving Transformation and Its Driving Factors. Mi L; Tian J; Si J; Chen Y; Li Y; Wang X Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32085534 [TBL] [Abstract][Full Text] [Related]
13. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Fereidoon M; Koch M Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443 [TBL] [Abstract][Full Text] [Related]
14. Indicating appropriate groundwater tables for desert river-bank forest at the Tarim River, Xinjiang, China. Hao XM; Chen YN; Li WH Environ Monit Assess; 2009 May; 152(1-4):167-77. PubMed ID: 18523853 [TBL] [Abstract][Full Text] [Related]
15. Multi-objective optimization-based reactive nitrogen transport modeling for the water-environment-agriculture nexus in a basin-scale coastal aquifer. Yin Z; Wu J; Song J; Yang Y; Zhu X; Wu J Water Res; 2022 Apr; 212():118111. PubMed ID: 35091218 [TBL] [Abstract][Full Text] [Related]
16. Optimal allocation of physical water resources integrated with virtual water trade in water scarce regions: A case study for Beijing, China. Ye Q; Li Y; Zhuo L; Zhang W; Xiong W; Wang C; Wang P Water Res; 2018 Feb; 129():264-276. PubMed ID: 29156391 [TBL] [Abstract][Full Text] [Related]
17. Determination of the optimal ecological water conveyance volume for vegetation restoration in an arid inland river basin, northwestern China. Hu S; Ma R; Sun Z; Ge M; Zeng L; Huang F; Bu J; Wang Z Sci Total Environ; 2021 Sep; 788():147775. PubMed ID: 34029814 [TBL] [Abstract][Full Text] [Related]
18. A novel multi-model fusion framework diagnoses the complex variation characteristics of ecological indicators and quantitatively reveals their driving mechanism. Kong Z; Han F; Ling H; Deng M; Li M; Yan J J Environ Manage; 2022 Sep; 318():115592. PubMed ID: 35763996 [TBL] [Abstract][Full Text] [Related]
19. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China. Chen Y; Li W; Zhou H; Chen Y; XinmingHao ; Fu A; Ma J Int J Biometeorol; 2017 Jun; 61(6):1055-1062. PubMed ID: 28283759 [TBL] [Abstract][Full Text] [Related]
20. Multi-Objective Optimal Allocation of Water Resources Based on the NSGA-2 Algorithm While Considering Intergenerational Equity: A Case Study of the Middle and Upper Reaches of Huaihe River Basin, China. Zhang J; Dong Z; Chen T Int J Environ Res Public Health; 2020 Dec; 17(24):. PubMed ID: 33322554 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]