These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 39089146)
1. Microwave pyrolysis of polypropylene, and high-density polyethylene, and catalytic gasification of waste coffee pods to hydrogen-rich gas. de Sousa Felix M; Hagare D; Tahmasebi A; Sathasivan A; Arora M Waste Manag; 2024 Oct; 187():306-316. PubMed ID: 39089146 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis of polyolefins for increasing the yield of monomers' recovery. Donaj PJ; Kaminsky W; Buzeto F; Yang W Waste Manag; 2012 May; 32(5):840-6. PubMed ID: 22093704 [TBL] [Abstract][Full Text] [Related]
3. Processing real-world waste plastics by pyrolysis-reforming for hydrogen and high-value carbon nanotubes. Wu C; Nahil MA; Miskolczi N; Huang J; Williams PT Environ Sci Technol; 2014; 48(1):819-26. PubMed ID: 24283272 [TBL] [Abstract][Full Text] [Related]
4. Production of hydrogen-rich fuel gas from waste plastics using continuous plasma pyrolysis reactor. Bhatt KP; Patel S; Upadhyay DS; Patel RN J Environ Manage; 2024 Apr; 356():120446. PubMed ID: 38484595 [TBL] [Abstract][Full Text] [Related]
5. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene. Kiran Ciliz N; Ekinci E; Snape CE Waste Manag; 2004; 24(2):173-81. PubMed ID: 14761756 [TBL] [Abstract][Full Text] [Related]
6. Catalyst-mediated pyrolysis of waste plastics: tuning yield, composition, and nature of pyrolysis oil. Kanattukara BV; Singh G; Sarkar P; Chopra A; Singh D; Mondal S; Kapur GS; Ramakumar SSV Environ Sci Pollut Res Int; 2023 May; 30(24):64994-65010. PubMed ID: 37074603 [TBL] [Abstract][Full Text] [Related]
7. Highly Efficient Recycling Waste Plastic into Hydrogen and Carbon Nanotubes through a Double Layer Microwave-Assisted Pyrolysis Method. Wang S; Hu Y; Lu S; Zhang B; Li S; Chen X Macromol Rapid Commun; 2024 Sep; 45(18):e2400270. PubMed ID: 39072921 [TBL] [Abstract][Full Text] [Related]
8. Oil recovery from microwave co-pyrolysis of polystyrene and polypropylene plastic particles for pollution mitigation. Ahmad F; Cao W; Zhang Y; Pan R; Zhao W; Liu W; Shuai Y Environ Pollut; 2024 Sep; 356():124240. PubMed ID: 38810672 [TBL] [Abstract][Full Text] [Related]
9. Production of combustible fuels and carbon nanotubes from plastic wastes using an in-situ catalytic microwave pyrolysis process. Irfan M; Saleem R; Shoukat B; Hussain H; Shukrullah S; Naz MY; Rahman S; Ghanim AAJ; Nawalany G; Jakubowski T Sci Rep; 2023 Jun; 13(1):9057. PubMed ID: 37270598 [TBL] [Abstract][Full Text] [Related]
10. Co-pyrolysis of polypropylene waste with Brazilian heavy oil. Assumpção LC; Carbonell MM; Marques MR J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):461-4. PubMed ID: 21409698 [TBL] [Abstract][Full Text] [Related]
11. Fast microwave-assisted ex-catalytic co-pyrolysis of bamboo and polypropylene for bio-oil production. Zhao Y; Wang Y; Duan D; Ruan R; Fan L; Zhou Y; Dai L; Lv J; Liu Y Bioresour Technol; 2018 Feb; 249():69-75. PubMed ID: 29040862 [TBL] [Abstract][Full Text] [Related]
12. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating. Duan D; Wang Y; Dai L; Ruan R; Zhao Y; Fan L; Tayier M; Liu Y Bioresour Technol; 2017 Oct; 241():207-213. PubMed ID: 28570885 [TBL] [Abstract][Full Text] [Related]
13. Pyrolysis of plastic packaging waste: A comparison of plastic residuals from material recovery facilities with simulated plastic waste. Adrados A; de Marco I; Caballero BM; López A; Laresgoiti MF; Torres A Waste Manag; 2012 May; 32(5):826-32. PubMed ID: 21795037 [TBL] [Abstract][Full Text] [Related]
14. High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials. Cai N; Xia S; Li X; Xiao H; Chen X; Chen Y; Bartocci P; Chen H; Williams PT; Yang H Waste Manag; 2021 Dec; 136():47-56. PubMed ID: 34637978 [TBL] [Abstract][Full Text] [Related]
15. The clean energy aspect of plastic waste - hydrogen gas production, CO Sudalaimuthu P; Sathyamurthy R Environ Sci Pollut Res Int; 2023 May; 30(25):66559-66584. PubMed ID: 37133666 [TBL] [Abstract][Full Text] [Related]
16. Characteristics of the microwave pyrolysis and microwave CO Chun YN; Jeong BR Environ Technol; 2018 Oct; 39(19):2484-2494. PubMed ID: 28726561 [TBL] [Abstract][Full Text] [Related]
17. Product Selection Toward High-Value Hydrogen and Bamboo-Shaped Carbon Nanotubes from Plastic Waste by Catalytic Microwave Processing. Li J; Chen K; Lin L; Han S; Meng F; Hu E; Qin W; Gao Y; Jiang J Environ Sci Technol; 2024 Aug; 58(33):14675-14686. PubMed ID: 39102504 [TBL] [Abstract][Full Text] [Related]
18. A review of microwave pyrolysis as a sustainable plastic waste management technique. Putra PHM; Rozali S; Patah MFA; Idris A J Environ Manage; 2022 Feb; 303():114240. PubMed ID: 34902653 [TBL] [Abstract][Full Text] [Related]
19. Conventional pyrolysis of Plastic waste for Product recovery and utilization of pyrolytic gases for carbon nanotubes production. Singh RK; Ruj B; Sadhukhan AK; Gupta P Environ Sci Pollut Res Int; 2022 Mar; 29(14):20007-20016. PubMed ID: 33179183 [TBL] [Abstract][Full Text] [Related]
20. Morphological characteristics of waste polyethylene/polypropylene plastics during pyrolysis and representative morphological signal characterizing pyrolysis stages. Wang H; Chen D; Yuan G; Ma X; Dai X Waste Manag; 2013 Feb; 33(2):327-39. PubMed ID: 23177018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]