These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 39089484)

  • 1. T cell exhaustion in human cancers.
    Kang K; Lin X; Chen P; Liu H; Liu F; Xiong W; Li G; Yi M; Li X; Wang H; Xiang B
    Biochim Biophys Acta Rev Cancer; 2024 Sep; 1879(5):189162. PubMed ID: 39089484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal of T-cell exhaustion: Mechanisms and synergistic approaches.
    Hu Y; Zhang Y; Shi F; Yang R; Yan J; Han T; Guan L
    Int Immunopharmacol; 2024 Sep; 138():112571. PubMed ID: 38941674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CD8
    Zhang B; Liu J; Mo Y; Zhang K; Huang B; Shang D
    Front Immunol; 2024; 15():1476904. PubMed ID: 39372416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T cell exhaustion initiates tertiary lymphoid structures and turbocharges cancer-immunity cycle.
    Lin WP; Li H; Sun ZJ
    EBioMedicine; 2024 Jun; 104():105154. PubMed ID: 38749300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overcoming T Cell Exhaustion in Tumor Microenvironment via Immune Checkpoint Modulation with Nano-Delivery Systems for Enhanced Immunotherapy.
    Huang X; Zhang W
    Small Methods; 2024 Aug; 8(8):e2301326. PubMed ID: 38040834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The synergistic immunotherapeutic impact of engineered CAR-T cells with PD-1 blockade in lymphomas and solid tumors: a systematic review.
    Satapathy BP; Sheoran P; Yadav R; Chettri D; Sonowal D; Dash CP; Dhaka P; Uttam V; Yadav R; Jain M; Jain A
    Front Immunol; 2024; 15():1389971. PubMed ID: 38799440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchical transcriptional network governing heterogeneous T cell exhaustion and its implications for immune checkpoint blockade.
    Tian W; Qin G; Jia M; Li W; Cai W; Wang H; Zhao Y; Bao X; Wei W; Zhang Y; Shao Q
    Front Immunol; 2023; 14():1198551. PubMed ID: 37398674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clinical implications of T cell exhaustion for cancer immunotherapy.
    Chow A; Perica K; Klebanoff CA; Wolchok JD
    Nat Rev Clin Oncol; 2022 Dec; 19(12):775-790. PubMed ID: 36216928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding and overcoming T cell exhaustion: Epigenetic and transcriptional dynamics in CAR-T cells against solid tumors.
    Ahn T; Bae EA; Seo H
    Mol Ther; 2024 Jun; 32(6):1617-1627. PubMed ID: 38582965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the ability of CAR-T cells to hit solid tumors: Challenges and strategies.
    Zhang ZZ; Wang T; Wang XF; Zhang YQ; Song SX; Ma CQ
    Pharmacol Res; 2022 Jan; 175():106036. PubMed ID: 34920118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular landscape of T cell exhaustion in the tumor microenvironment and reinvigoration strategies.
    Heidari-Foroozan M; Rezalotfi A; Rezaei N
    Int Rev Immunol; 2024; 43(6):419-440. PubMed ID: 39257319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fueling the Revolution: Targeting Metabolism to Enhance Immunotherapy.
    Leone RD; Powell JD
    Cancer Immunol Res; 2021 Mar; 9(3):255-260. PubMed ID: 33648947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenetic strategies to boost CAR T cell therapy.
    Akbari B; Ghahri-Saremi N; Soltantoyeh T; Hadjati J; Ghassemi S; Mirzaei HR
    Mol Ther; 2021 Sep; 29(9):2640-2659. PubMed ID: 34365035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-Intrinsic Barriers of T Cell-Based Immunotherapy.
    Ghoneim HE; Zamora AE; Thomas PG; Youngblood BA
    Trends Mol Med; 2016 Dec; 22(12):1000-1011. PubMed ID: 27825667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pushing Past the Blockade: Advancements in T Cell-Based Cancer Immunotherapies.
    Waibl Polania J; Lerner EC; Wilkinson DS; Hoyt-Miggelbrink A; Fecci PE
    Front Immunol; 2021; 12():777073. PubMed ID: 34868044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dendritic Cells, the T-cell-inflamed Tumor Microenvironment, and Immunotherapy Treatment Response.
    Garris CS; Luke JJ
    Clin Cancer Res; 2020 Aug; 26(15):3901-3907. PubMed ID: 32332013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular insight into T cell exhaustion in hepatocellular carcinoma.
    Zhu Y; Tan H; Wang J; Zhuang H; Zhao H; Lu X
    Pharmacol Res; 2024 May; 203():107161. PubMed ID: 38554789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CAR-T Cells Hit the Tumor Microenvironment: Strategies to Overcome Tumor Escape.
    Rodriguez-Garcia A; Palazon A; Noguera-Ortega E; Powell DJ; Guedan S
    Front Immunol; 2020; 11():1109. PubMed ID: 32625204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immune Checkpoints and CAR-T Cells: The Pioneers in Future Cancer Therapies?
    Hosseinkhani N; Derakhshani A; Kooshkaki O; Abdoli Shadbad M; Hajiasgharzadeh K; Baghbanzadeh A; Safarpour H; Mokhtarzadeh A; Brunetti O; Yue SC; Silvestris N; Baradaran B
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.