These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 39090145)

  • 1. Predicting mine water inflow volumes using a decomposition-optimization algorithm-machine learning approach.
    Bian J; Hou T; Ren D; Lin C; Qiao X; Ma X; Ma J; Wang Y; Wang J; Liang X
    Sci Rep; 2024 Aug; 14(1):17777. PubMed ID: 39090145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic real-time forecasting technique for reclaimed water volumes in urban river environmental management.
    Zhang L; Wang C; Hu W; Wang X; Wang H; Sun X; Ren W; Feng Y
    Environ Res; 2024 May; 248():118267. PubMed ID: 38244969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas Concentration Prediction Based on IWOA-LSTM-CEEMDAN Residual Correction Model.
    Xu N; Wang X; Meng X; Chang H
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature Prediction of Seasonal Frozen Subgrades Based on CEEMDAN-LSTM Hybrid Model.
    Chen L; Liu X; Zeng C; He X; Chen F; Zhu B
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CEEMDAN-IPSO-LSTM: A Novel Model for Short-Term Passenger Flow Prediction in Urban Rail Transit Systems.
    Zeng L; Li Z; Yang J; Xu X
    Int J Environ Res Public Health; 2022 Dec; 19(24):. PubMed ID: 36554314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-step forecasting of dissolved oxygen in River Ganga based on CEEMDAN-AdaBoost-BiLSTM-LSTM model.
    Pant N; Toshniwal D; Gurjar BR
    Sci Rep; 2024 May; 14(1):11199. PubMed ID: 38755217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel model for runoff prediction based on the ICEEMDAN-NGO-LSTM coupling.
    Yang C; Jiang Y; Liu Y; Liu S; Liu F
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82179-82188. PubMed ID: 37318729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of robust deep learning models to predict mine water inflow: Implication for groundwater environment management.
    Yang S; Lian H; Xu B; Thanh HV; Chen W; Yin H; Dai Z
    Sci Total Environ; 2023 May; 871():162056. PubMed ID: 36758705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STL-decomposition ensemble deep learning models for daily reservoir inflow forecast for hydroelectricity production.
    Tebong NK; Simo T; Takougang AN; Ntanguen PH
    Heliyon; 2023 Jun; 9(6):e16456. PubMed ID: 37303512
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting.
    Yang S; Yuan A; Yu Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Daily flow prediction of the Huayuankou hydrometeorological station based on the coupled CEEMDAN-SE-BiLSTM model.
    Li H; Zhang X; Sun S; Wen Y; Yin Q
    Sci Rep; 2023 Nov; 13(1):18915. PubMed ID: 37919397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting PM 2.5 concentration based on integrating of CEEMDAN decomposition method with SVM and LSTM.
    Ameri R; Hsu CC; Band SS; Zamani M; Shu CM; Khorsandroo S
    Ecotoxicol Environ Saf; 2023 Nov; 266():115572. PubMed ID: 37837695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time series prediction model using LSTM-Transformer neural network for mine water inflow.
    Shi J; Wang S; Qu P; Shao J
    Sci Rep; 2024 Aug; 14(1):18284. PubMed ID: 39112684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-scale evolutionary deep learning model based on CEEMDAN, improved whale optimization algorithm, regularized extreme learning machine and LSTM for AQI prediction.
    Ji C; Zhang C; Hua L; Ma H; Nazir MS; Peng T
    Environ Res; 2022 Dec; 215(Pt 1):114228. PubMed ID: 36084674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel hybrid model based on two-stage data processing and machine learning for forecasting chlorophyll-a concentration in reservoirs.
    Yu W; Wang X; Jiang X; Zhao R; Zhao S
    Environ Sci Pollut Res Int; 2024 Jan; 31(1):262-279. PubMed ID: 38015396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new denoising approach based on mode decomposition applied to the stock market time series: 2LE-CEEMDAN.
    Akşehir ZD; Kılıç E
    PeerJ Comput Sci; 2024; 10():e1852. PubMed ID: 38435596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid prediction model of dissolved oxygen concentration based on secondary decomposition and bidirectional gate recurrent unit.
    Jiao J; Ma Q; Liu F; Zhao L; Huang S
    Environ Geochem Health; 2024 Mar; 46(4):127. PubMed ID: 38483668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition.
    Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus prediction in the middle reaches of the Yangtze river based on GRA-CEEMDAN-CNLSTM-DBO.
    Yao H; Huang Y; Lv P; Luo H
    Sci Rep; 2024 Aug; 14(1):19442. PubMed ID: 39169112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ensemble LSTM-based AQI forecasting model with decomposition-reconstruction technique via CEEMDAN and fuzzy entropy.
    Wu Z; Zhao W; Lv Y
    Air Qual Atmos Health; 2022; 15(12):2299-2311. PubMed ID: 36196368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.