These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 39090263)
1. Improved microvascular imaging with optical coherence tomography using 3D neural networks and a channel attention mechanism. Rashidi M; Kalenkov G; Green DJ; Mclaughlin RA Sci Rep; 2024 Aug; 14(1):17809. PubMed ID: 39090263 [TBL] [Abstract][Full Text] [Related]
2. Enhanced microvascular imaging through deep learning-driven OCTA reconstruction with squeeze-and-excitation block integration. Rashidi M; Kalenkov G; Green DJ; McLaughlin RA Biomed Opt Express; 2024 Oct; 15(10):5592-5608. PubMed ID: 39421773 [TBL] [Abstract][Full Text] [Related]
3. Integrated deep learning framework for accelerated optical coherence tomography angiography. Kim G; Kim J; Choi WJ; Kim C; Lee S Sci Rep; 2022 Jan; 12(1):1289. PubMed ID: 35079046 [TBL] [Abstract][Full Text] [Related]
4. A deep learning approach for pose estimation from volumetric OCT data. Gessert N; Schlüter M; Schlaefer A Med Image Anal; 2018 May; 46():162-179. PubMed ID: 29550582 [TBL] [Abstract][Full Text] [Related]
5. A hand-held optical coherence tomography angiography scanner based on angiography reconstruction transformer networks. Liao J; Yang S; Zhang T; Li C; Huang Z J Biophotonics; 2023 Sep; 16(9):e202300100. PubMed ID: 37264544 [TBL] [Abstract][Full Text] [Related]
6. Deep-learning-based motion correction in optical coherence tomography angiography. Li A; Du C; Pan Y J Biophotonics; 2021 Dec; 14(12):e202100097. PubMed ID: 34288527 [TBL] [Abstract][Full Text] [Related]
7. Improving cerebral microvascular image quality of optical coherence tomography angiography with deep learning-based segmentation. Fan F; Zhang J; Zhu L; Ma Z; Zhu J J Biophotonics; 2021 Nov; 14(11):e202100171. PubMed ID: 34382744 [TBL] [Abstract][Full Text] [Related]
8. Motion Artifact Correction for OCT Microvascular Images Based on Image Feature Matching. Chen X; Ma Z; Wang C; Cui J; Fan F; Gao X; Zhu J J Biophotonics; 2024 Oct; 17(10):e202400198. PubMed ID: 39198156 [TBL] [Abstract][Full Text] [Related]
9. Optimization-based vessel segmentation pipeline for robust quantification of capillary networks in skin with optical coherence tomography angiography. Casper M; Schulz-Hildebrandt H; Evers M; Birngruber R; Manstein D; Hüttmann G J Biomed Opt; 2019 Apr; 24(4):1-11. PubMed ID: 31041858 [TBL] [Abstract][Full Text] [Related]
10. Rethinking the neighborhood information for deep learning-based optical coherence tomography angiography. Jiang Z; Huang Z; You Y; Geng M; Meng X; Qiu B; Zhu L; Gao M; Wang J; Zhou C; Ren Q; Lu Y Med Phys; 2022 Jun; 49(6):3705-3716. PubMed ID: 35306668 [TBL] [Abstract][Full Text] [Related]
11. Comparative study of optical coherence tomography angiography algorithms for rodent retinal imaging. Dadkhah A; Paudel D; Jiao S Exp Biol Med (Maywood); 2021 Oct; 246(20):2207-2213. PubMed ID: 34120494 [TBL] [Abstract][Full Text] [Related]
12. Feasibility of deep learning-based polarization-sensitive optical coherence tomography angiography for imaging cutaneous microvasculature. Pan M; Wang Y; Gong P; Wang Q; Cense B Biomed Opt Express; 2023 Aug; 14(8):3856-3870. PubMed ID: 37799704 [TBL] [Abstract][Full Text] [Related]
13. Machine learning in optical coherence tomography angiography. Le D; Son T; Yao X Exp Biol Med (Maywood); 2021 Oct; 246(20):2170-2183. PubMed ID: 34279136 [TBL] [Abstract][Full Text] [Related]
14. HTC-retina: A hybrid retinal diseases classification model using transformer-Convolutional Neural Network from optical coherence tomography images. Laouarem A; Kara-Mohamed C; Bourennane EB; Hamdi-Cherif A Comput Biol Med; 2024 Aug; 178():108726. PubMed ID: 38878400 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous alignment and surface regression using hybrid 2D-3D networks for 3D coherent layer segmentation of retinal OCT images with full and sparse annotations. Liu H; Wei D; Lu D; Tang X; Wang L; Zheng Y Med Image Anal; 2024 Jan; 91():103019. PubMed ID: 37944431 [TBL] [Abstract][Full Text] [Related]
16. Detection of localized pulsatile motion in cutaneous microcirculation by speckle decorrelation optical coherence tomography angiography. Gong P; Heiss C; Sampson DM; Wang Q; Yuan Z; Sampson DD J Biomed Opt; 2020 Sep; 25(9):. PubMed ID: 32935499 [TBL] [Abstract][Full Text] [Related]
17. Deep-learning visualization enhancement method for optical coherence tomography angiography in dermatology. Xu J; Yuan X; Huang Y; Qin J; Lan G; Qiu H; Yu B; Jia H; Tan H; Zhao S; Feng Z; An L; Wei X J Biophotonics; 2023 Oct; 16(10):e202200366. PubMed ID: 37289020 [TBL] [Abstract][Full Text] [Related]
18. A deep learning based pipeline for optical coherence tomography angiography. Liu X; Huang Z; Wang Z; Wen C; Jiang Z; Yu Z; Liu J; Liu G; Huang X; Maier A; Ren Q; Lu Y J Biophotonics; 2019 Oct; 12(10):e201900008. PubMed ID: 31168927 [TBL] [Abstract][Full Text] [Related]
19. Tail artifacts removal of three-dimensional optical coherence tomography angiography with common parts extraction method. Zhang W; He B; Wu Y; Tao Y; Zhu F; Cai W; Liu N; Zhao Q; Xue P J Biophotonics; 2022 Nov; 15(11):e202200155. PubMed ID: 36328058 [TBL] [Abstract][Full Text] [Related]
20. VET: Vasculature Extraction Transformer for Single-Scan Optical Coherence Tomography Angiography. Liao J; Zhang T; Zhang Y; Li C; Huang Z IEEE Trans Biomed Eng; 2024 Apr; 71(4):1179-1190. PubMed ID: 37930903 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]