These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 39090688)
1. Current genomic deep learning models display decreased performance in cell type-specific accessible regions. Kathail P; Shuai RW; Chung R; Ye CJ; Loeb GB; Ioannidis NM Genome Biol; 2024 Aug; 25(1):202. PubMed ID: 39090688 [TBL] [Abstract][Full Text] [Related]
2. Current genomic deep learning models display decreased performance in cell type specific accessible regions. Kathail P; Shuai RW; Chung R; Ye CJ; Loeb GB; Ioannidis NM bioRxiv; 2024 Jul; ():. PubMed ID: 39026761 [TBL] [Abstract][Full Text] [Related]
3. DeepCAGE: Incorporating Transcription Factors in Genome-wide Prediction of Chromatin Accessibility. Liu Q; Hua K; Zhang X; Wong WH; Jiang R Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):496-507. PubMed ID: 35293310 [TBL] [Abstract][Full Text] [Related]
4. Genome-wide prediction of cis-regulatory regions using supervised deep learning methods. Li Y; Shi W; Wasserman WW BMC Bioinformatics; 2018 May; 19(1):202. PubMed ID: 29855387 [TBL] [Abstract][Full Text] [Related]
5. DeepPHiC: predicting promoter-centered chromatin interactions using a novel deep learning approach. Agarwal A; Chen L Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36495179 [TBL] [Abstract][Full Text] [Related]
6. The impact of different negative training data on regulatory sequence predictions. Krützfeldt LM; Schubach M; Kircher M PLoS One; 2020; 15(12):e0237412. PubMed ID: 33259518 [TBL] [Abstract][Full Text] [Related]
7. Interpretation of allele-specific chromatin accessibility using cell state-aware deep learning. Atak ZK; Taskiran II; Demeulemeester J; Flerin C; Mauduit D; Minnoye L; Hulselmans G; Christiaens V; Ghanem GE; Wouters J; Aerts S Genome Res; 2021 Jun; 31(6):1082-1096. PubMed ID: 33832990 [TBL] [Abstract][Full Text] [Related]
8. Chromatin accessibility prediction via a hybrid deep convolutional neural network. Liu Q; Xia F; Yin Q; Jiang R Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282 [TBL] [Abstract][Full Text] [Related]
9. Addiction-Associated Genetic Variants Implicate Brain Cell Type- and Region-Specific Cis-Regulatory Elements in Addiction Neurobiology. Srinivasan C; Phan BN; Lawler AJ; Ramamurthy E; Kleyman M; Brown AR; Kaplow IM; Wirthlin ME; Pfenning AR J Neurosci; 2021 Oct; 41(43):9008-9030. PubMed ID: 34462306 [TBL] [Abstract][Full Text] [Related]
10. DeepSATA: A Deep Learning-Based Sequence Analyzer Incorporating the Transcription Factor Binding Affinity to Dissect the Effects of Non-Coding Genetic Variants. Ma W; Fu Y; Bao Y; Wang Z; Lei B; Zheng W; Wang C; Liu Y Int J Mol Sci; 2023 Jul; 24(15):. PubMed ID: 37569400 [TBL] [Abstract][Full Text] [Related]
12. Genetic and epigenetic features of promoters with ubiquitous chromatin accessibility support ubiquitous transcription of cell-essential genes. Fan K; Moore JE; Zhang XO; Weng Z Nucleic Acids Res; 2021 Jun; 49(10):5705-5725. PubMed ID: 33978759 [TBL] [Abstract][Full Text] [Related]
15. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization. Nikumbh S; Pfeifer N BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341 [TBL] [Abstract][Full Text] [Related]
16. Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques. Cappelletti L; Petrini A; Gliozzo J; Casiraghi E; Schubach M; Kircher M; Valentini G BMC Bioinformatics; 2022 Dec; 23(Suppl 2):154. PubMed ID: 36510125 [TBL] [Abstract][Full Text] [Related]
17. Personal transcriptome variation is poorly explained by current genomic deep learning models. Huang C; Shuai RW; Baokar P; Chung R; Rastogi R; Kathail P; Ioannidis NM Nat Genet; 2023 Dec; 55(12):2056-2059. PubMed ID: 38036790 [TBL] [Abstract][Full Text] [Related]
18. PlantDeepSEA, a deep learning-based web service to predict the regulatory effects of genomic variants in plants. Zhao H; Tu Z; Liu Y; Zong Z; Li J; Liu H; Xiong F; Zhan J; Hu X; Xie W Nucleic Acids Res; 2021 Jul; 49(W1):W523-W529. PubMed ID: 34037796 [TBL] [Abstract][Full Text] [Related]
19. Sequence and chromatin determinants of cell-type-specific transcription factor binding. Arvey A; Agius P; Noble WS; Leslie C Genome Res; 2012 Sep; 22(9):1723-34. PubMed ID: 22955984 [TBL] [Abstract][Full Text] [Related]
20. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts. Nair S; Kim DS; Perricone J; Kundaje A Bioinformatics; 2019 Jul; 35(14):i108-i116. PubMed ID: 31510655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]