These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 39090815)

  • 1. Metabolic Engineering of
    Xu J; Xia Y; Shi Y; Zhu M; Zhang H; Gui X; Shen W; Yang H; Chen X
    ACS Synth Biol; 2024 Aug; 13(8):2533-2544. PubMed ID: 39090815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering the oleaginous yeast Yarrowia lipolytica to produce the aroma compound β-ionone.
    Czajka JJ; Nathenson JA; Benites VT; Baidoo EEK; Cheng Q; Wang Y; Tang YJ
    Microb Cell Fact; 2018 Sep; 17(1):136. PubMed ID: 30172260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modular pathway engineering strategy for the high-level production of β-ionone in Yarrowia lipolytica.
    Lu Y; Yang Q; Lin Z; Yang X
    Microb Cell Fact; 2020 Feb; 19(1):49. PubMed ID: 32103761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De Novo Synthesis of Dihydro-β-ionone through Metabolic Engineering and Bacterium-Yeast Coculture.
    Qi Z; Tong X; Ke K; Wang X; Pei J; Bu S; Zhao L
    J Agric Food Chem; 2024 Feb; 72(6):3066-3076. PubMed ID: 38294193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome-scale metabolic modeling and in silico analysis of lipid accumulating yeast Candida tropicalis for dicarboxylic acid production.
    Mishra P; Park GY; Lakshmanan M; Lee HS; Lee H; Chang MW; Ching CB; Ahn J; Lee DY
    Biotechnol Bioeng; 2016 Sep; 113(9):1993-2004. PubMed ID: 26915092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mediating oxidative stress enhances α-ionone biosynthesis and strain robustness during process scaling up.
    Huang CN; Lim X; Ong L; Lim C; Chen X; Zhang C
    Microb Cell Fact; 2022 Nov; 21(1):246. PubMed ID: 36424649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-pot synthesis of dihydro-β-ionone from carotenoids using carotenoid cleavage dioxygenase and enoate reductase.
    Qi Z; Tong X; Zhang X; Lin H; Bu S; Zhao L
    Bioprocess Biosyst Eng; 2022 May; 45(5):891-900. PubMed ID: 35244776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering the oleaginous yeast Candida tropicalis for α-humulene overproduction.
    Zhang L; Yang H; Xia Y; Shen W; Liu L; Li Q; Chen X
    Biotechnol Biofuels Bioprod; 2022 May; 15(1):59. PubMed ID: 35619177
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating Enzyme and Metabolic Engineering Tools for Enhanced α-Ionone Production.
    Chen X; Shukal S; Zhang C
    J Agric Food Chem; 2019 Dec; 67(49):13451-13459. PubMed ID: 31079451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein engineering of carotenoid cleavage dioxygenases to optimize β-ionone biosynthesis in yeast cell factories.
    Werner N; Ramirez-Sarmiento CA; Agosin E
    Food Chem; 2019 Nov; 299():125089. PubMed ID: 31319343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A "plug-n-play" modular metabolic system for the production of apocarotenoids.
    Zhang C; Chen X; Lindley ND; Too HP
    Biotechnol Bioeng; 2018 Jan; 115(1):174-183. PubMed ID: 29077207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning and characterization of enoate reductase with high β-ionone to dihydro-β-ionone bioconversion productivity.
    Zhang X; Liao S; Cao F; Zhao L; Pei J; Tang F
    BMC Biotechnol; 2018 May; 18(1):26. PubMed ID: 29743047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of β-ionone by combined expression of carotenogenic and plant CCD1 genes in Saccharomyces cerevisiae.
    López J; Essus K; Kim IK; Pereira R; Herzog J; Siewers V; Nielsen J; Agosin E
    Microb Cell Fact; 2015 Jun; 14():84. PubMed ID: 26063466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carotenoid Cleavage Dioxygenase 4 Catalyzes the Formation of Carotenoid-Derived Volatile β-Ionone during Tea (
    Wang J; Zhang N; Zhao M; Jing T; Jin J; Wu B; Wan X; Schwab W; Song C
    J Agric Food Chem; 2020 Feb; 68(6):1684-1690. PubMed ID: 31957431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioconversion of sago processing wastewater into biodiesel: Optimization of lipid production by an oleaginous yeast, Candida tropicalis ASY2 and its transesterification process using response surface methodology.
    Thangavelu K; Sundararaju P; Srinivasan N; Uthandi S
    Microb Cell Fact; 2021 Aug; 20(1):167. PubMed ID: 34446015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polycistronic expression of a β-carotene biosynthetic pathway in Saccharomyces cerevisiae coupled to β-ionone production.
    Beekwilder J; van Rossum HM; Koopman F; Sonntag F; Buchhaupt M; Schrader J; Hall RD; Bosch D; Pronk JT; van Maris AJ; Daran JM
    J Biotechnol; 2014 Dec; 192 Pt B():383-92. PubMed ID: 24486029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dehydration-Induced Carotenoid Cleavage Dioxygenase 1 Reveals a Novel Route for β-Ionone Formation during Tea (
    Wang J; Wu B; Zhang N; Zhao M; Jing T; Wu Y; Hu Y; Yu F; Wan X; Schwab W; Song C
    J Agric Food Chem; 2020 Sep; 68(39):10815-10821. PubMed ID: 32840106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering an oleaginous yeast Candida tropicalis SY005 for enhanced lipid production.
    Chattopadhyay A; Gupta A; Maiti MK
    Appl Microbiol Biotechnol; 2020 Oct; 104(19):8399-8411. PubMed ID: 32820371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor.
    Zhang L; Chen Z; Wang J; Shen W; Li Q; Chen X
    Microb Cell Fact; 2021 May; 20(1):105. PubMed ID: 34034730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering
    López J; Bustos D; Camilo C; Arenas N; Saa PA; Agosin E
    Front Bioeng Biotechnol; 2020; 8():578793. PubMed ID: 33102463
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.