These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39090935)
1. Data-based systematic error extraction and compensation methods based on wavelet transform in ultra-precision optical polishing. Li H; Wan S; Jiang P; Yan S; Han Y; Wang L; Niu Z; Hu C; Jiang G; Cao Z; Zhang Y; Wei C; Shao J Opt Lett; 2024 Aug; 49(15):4366-4369. PubMed ID: 39090935 [TBL] [Abstract][Full Text] [Related]
2. Statistical perception of the chaotic fabrication error and the self-adaptive processing decision in ultra-precision optical polishing. Li H; Wan S; Niu Z; Guo H; Zhang L; Lu Q; Wei C; Shao J Opt Express; 2023 Feb; 31(5):7707-7724. PubMed ID: 36859896 [TBL] [Abstract][Full Text] [Related]
3. High-precision magnetorheological finishing based on robot by measuring and compensating trajectory error. Cheng R; Li L; Li X; Yang B; Luo X; Xue D; Zhang X Opt Express; 2022 Dec; 30(25):44741-44768. PubMed ID: 36522892 [TBL] [Abstract][Full Text] [Related]
4. Process Chain for Ultra-Precision and High-Efficiency Manufacturing of Large-Aperture Silicon Carbide Aspheric Mirrors. Zhong B; Wu W; Wang J; Zhou L; Hou J; Ji B; Deng W; Wei Q; Wang C; Xu Q Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37420971 [TBL] [Abstract][Full Text] [Related]
5. Accurately predicting the tool influence function to achieve high-precision magnetorheological finishing using robots. Cheng R; Li L; Xue D; Li X; Bai Y; Luo X; Zhang X Opt Express; 2023 Oct; 31(21):34917-34936. PubMed ID: 37859236 [TBL] [Abstract][Full Text] [Related]
6. RISE: robust iterative surface extension for sub-nanometer X-ray mirror fabrication. Wang T; Huang L; Choi H; Vescovi M; Kuhne D; Zhu Y; Pullen WC; Ke X; Kim DW; Kemao Q; Tayabaly K; Bouet N; Idir M Opt Express; 2021 May; 29(10):15114-15132. PubMed ID: 33985218 [TBL] [Abstract][Full Text] [Related]
7. Plug-and-play positioning error compensation model for ripple suppressing in industrial robot polishing. Jiang P; Wan S; Niu Z; Li H; Han Y; Wei C; Zhang D; Shao J Appl Opt; 2023 Nov; 62(32):8670-8677. PubMed ID: 38037984 [TBL] [Abstract][Full Text] [Related]
8. Rapid polishing process for the x ray reflector. Yin L; Lin Z; Hu H; Dai Y Appl Opt; 2022 Sep; 61(27):7991-7998. PubMed ID: 36255920 [TBL] [Abstract][Full Text] [Related]
9. Evaluation and compensation of a kinematic error to enhance prepolishing accuracy for large aspheric surfaces by robotic bonnet technology. Zhong B; Xu Q; Wang J; Deng W; Chen X Opt Express; 2020 Aug; 28(17):25085-25100. PubMed ID: 32907038 [TBL] [Abstract][Full Text] [Related]
10. A High Efficiency and Precision Smoothing Polishing Method for NiP Coating of Metal Mirror. Xu C; Peng X; Liu J; Hu H; Lai T; Yang Q; Xiong Y Micromachines (Basel); 2022 Jul; 13(8):. PubMed ID: 35893169 [TBL] [Abstract][Full Text] [Related]
11. High precision polishing of aluminum alloy mirrors through a combination of magnetorheological finishing and chemical mechanical polishing. Bai Y; Zhang Z; Li L; Luo X; Li F; Zhang X Opt Express; 2024 Apr; 32(9):15813-15826. PubMed ID: 38859222 [TBL] [Abstract][Full Text] [Related]
12. Research on the Influence of the Material Removal Profile of a Spherical Polishing Tool on the Mid-Spatial Frequency Errors of Optical Surfaces. He Z; Hai K; Li K; Yu J; Wu L; Zhang L; Su X; Cai L; Huang W; Hang W Micromachines (Basel); 2024 May; 15(5):. PubMed ID: 38793227 [TBL] [Abstract][Full Text] [Related]
13. A Method of Restraining the Adverse Effects of Grinding Marks on Small Aperture Aspheric Mirrors. Bao J; Peng X; Hu H; Lai T Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144044 [TBL] [Abstract][Full Text] [Related]
14. Region-adaptive path planning for precision optical polishing with industrial robots. Wan S; Zhang X; Xu M; Wang W; Jiang X Opt Express; 2018 Sep; 26(18):23782-23795. PubMed ID: 30184874 [TBL] [Abstract][Full Text] [Related]
15. Method to improve the surface shape of BK7 glass in full-aperture polishing. Zhang F; Wang Y Appl Opt; 2021 Aug; 60(23):6910-6917. PubMed ID: 34613172 [TBL] [Abstract][Full Text] [Related]
16. Geometric error modeling and compensation for high precision composite optical measurement systems. Liu J; Chen Q; Wang J; Sun S; Zhang X; Du J; Jiang J; Tian Z; Yu S; Yan W Opt Express; 2023 Dec; 31(25):42015-42035. PubMed ID: 38087585 [TBL] [Abstract][Full Text] [Related]
18. Planar polishing process method based on real-time dressing of a polishing pad surface. Zhao L; Zhao H; Wang H; Zhang M; Xie R; Zhang M Appl Opt; 2022 Apr; 61(12):3319-3327. PubMed ID: 35471427 [TBL] [Abstract][Full Text] [Related]
19. Highly Accurate Digital Processing of Large Stroke Guideway with an Optical Material-Corning Code 7972. Zhang H; Dai Y; Lai T Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300728 [TBL] [Abstract][Full Text] [Related]
20. Convergent polishing: a simple, rapid, full aperture polishing process of high quality optical flats & spheres. Suratwala T; Steele R; Feit M; Dylla-Spears R; Desjardin R; Mason D; Wong L; Geraghty P; Miller P; Shen N J Vis Exp; 2014 Dec; (94):. PubMed ID: 25489745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]