These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39090991)
1. Unusual Vibrational Coupling of the Schiff Base in the Retinal Chromophore of Sodium Ion-Pumping Rhodopsins. Nakamura T; Shinozaki Y; Otomo A; Urui T; Mizuno M; Abe-Yoshizumi R; Hashimoto M; Kojima K; Sudo Y; Kandori H; Mizutani Y J Phys Chem B; 2024 Aug; 128(32):7813-7821. PubMed ID: 39090991 [TBL] [Abstract][Full Text] [Related]
2. Configurational Changes of Retinal Schiff Base during Membrane Na Fujisawa T; Kinoue K; Seike R; Kikukawa T; Unno M J Phys Chem Lett; 2024 Feb; 15(7):1993-1998. PubMed ID: 38349321 [TBL] [Abstract][Full Text] [Related]
3. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins. Shionoya T; Singh M; Mizuno M; Kandori H; Mizutani Y Biochemistry; 2021 Oct; 60(41):3050-3057. PubMed ID: 34601881 [TBL] [Abstract][Full Text] [Related]
4. Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins. Otomo A; Mizuno M; Singh M; Shihoya W; Inoue K; Nureki O; Béjà O; Kandori H; Mizutani Y J Phys Chem Lett; 2018 Nov; 9(22):6431-6436. PubMed ID: 30351947 [TBL] [Abstract][Full Text] [Related]
5. Unique Vibrational Characteristics and Structures of the Photoexcited Retinal Chromophore in Ion-Pumping Rhodopsins. Li Z; Mizuno M; Ejiri T; Hayashi S; Kandori H; Mizutani Y J Phys Chem B; 2023 Nov; 127(46):9873-9886. PubMed ID: 37940604 [TBL] [Abstract][Full Text] [Related]
6. Solid-State Nuclear Magnetic Resonance Structural Study of the Retinal-Binding Pocket in Sodium Ion Pump Rhodopsin. Shigeta A; Ito S; Inoue K; Okitsu T; Wada A; Kandori H; Kawamura I Biochemistry; 2017 Jan; 56(4):543-550. PubMed ID: 28040890 [TBL] [Abstract][Full Text] [Related]
7. Covalent Bond between the Lys-255 Residue and the Main Chain Is Responsible for Stable Retinal Chromophore Binding and Sodium-Pumping Activity of Ochiai S; Ichikawa Y; Tomida S; Furutani Y Biochemistry; 2023 Jun; 62(12):1849-1857. PubMed ID: 37243673 [TBL] [Abstract][Full Text] [Related]
8. Photoisomerization pathway of the microbial rhodopsin chromophore in solution. Sugiura M; Kandori H Photochem Photobiol Sci; 2024 Aug; 23(8):1435-1443. PubMed ID: 38886314 [TBL] [Abstract][Full Text] [Related]
9. Strongly hydrogen-bonded water molecule present near the retinal chromophore of Leptosphaeria rhodopsin, the bacteriorhodopsin-like proton pump from a eukaryote. Sumii M; Furutani Y; Waschuk SA; Brown LS; Kandori H Biochemistry; 2005 Nov; 44(46):15159-66. PubMed ID: 16285719 [TBL] [Abstract][Full Text] [Related]
10. Structure and Heterogeneity of Retinal Chromophore in Chloride Pump Rhodopsins Revealed by Raman Optical Activity. Ohya M; Kikukawa T; Matsuo J; Tsukamoto T; Nagaura R; Fujisawa T; Unno M J Phys Chem B; 2023 Jun; 127(21):4775-4782. PubMed ID: 37201188 [TBL] [Abstract][Full Text] [Related]
11. Light-Driven Proton, Sodium Ion, and Chloride Ion Transfer Mechanisms in Rhodopsins: SAC-CI Study. Miyahara T; Nakatsuji H J Phys Chem A; 2019 Mar; 123(9):1766-1784. PubMed ID: 30762358 [TBL] [Abstract][Full Text] [Related]
12. A Unified View on Varied Ultrafast Dynamics of the Primary Process in Microbial Rhodopsins. Chang CF; Kuramochi H; Singh M; Abe-Yoshizumi R; Tsukuda T; Kandori H; Tahara T Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111930. PubMed ID: 34670002 [TBL] [Abstract][Full Text] [Related]
13. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates. Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296 [TBL] [Abstract][Full Text] [Related]
14. Chromophore-Protein Interactions Affecting the Polyene Twist and π-π* Energy Gap of the Retinal Chromophore in Schizorhodopsins. Urui T; Shionoya T; Mizuno M; Inoue K; Kandori H; Mizutani Y J Phys Chem B; 2024 Mar; 128(10):2389-2397. PubMed ID: 38433395 [TBL] [Abstract][Full Text] [Related]
15. A subgroup of light-driven sodium pumps with an additional Schiff base counterion. Podoliak E; Lamm GHU; Marin E; Schellbach AV; Fedotov DA; Stetsenko A; Asido M; Maliar N; Bourenkov G; Balandin T; Baeken C; Astashkin R; Schneider TR; Bateman A; Wachtveitl J; Schapiro I; Busskamp V; Guskov A; Gordeliy V; Alekseev A; Kovalev K Nat Commun; 2024 Apr; 15(1):3119. PubMed ID: 38600129 [TBL] [Abstract][Full Text] [Related]
16. Long-distance perturbation on Schiff base-counterion interactions by His30 and the extracellular Na Shigeta A; Ito S; Kaneko R; Tomida S; Inoue K; Kandori H; Kawamura I Phys Chem Chem Phys; 2018 Mar; 20(13):8450-8455. PubMed ID: 29537054 [TBL] [Abstract][Full Text] [Related]
17. Discovery of a new light-driven Li Cho SG; Shim JG; Choun K; Meas S; Kang KW; Kim JH; Cho HS; Jung KH J Photochem Photobiol B; 2021 Oct; 223():112285. PubMed ID: 34411952 [TBL] [Abstract][Full Text] [Related]
18. Characterization of retinal chromophore and protonated Schiff base in Thermoplasmatales archaeon heliorhodopsin using solid-state NMR spectroscopy. Suzuki S; Kumagai S; Nagashima T; Yamazaki T; Okitsu T; Wada A; Naito A; Katayama K; Inoue K; Kandori H; Kawamura I Biophys Chem; 2023 May; 296():106991. PubMed ID: 36905840 [TBL] [Abstract][Full Text] [Related]
19. Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae. Ogren JI; Mamaev S; Russano D; Li H; Spudich JL; Rothschild KJ Biochemistry; 2014 Jun; 53(24):3961-70. PubMed ID: 24869998 [TBL] [Abstract][Full Text] [Related]
20. The Voltage Dependent Sidedness of the Reprotonation of the Retinal Schiff Base Determines the Unique Inward Pumping of Xenorhodopsin. Weissbecker J; Boumrifak C; Breyer M; Wießalla T; Shevchenko V; Mager T; Slavov C; Alekseev A; Kovalev K; Gordeliy V; Bamberg E; Wachtveitl J Angew Chem Int Ed Engl; 2021 Oct; 60(42):23010-23017. PubMed ID: 34339559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]