These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 39090991)
21. Structural changes of pharaonis phoborhodopsin upon photoisomerization of the retinal chromophore: infrared spectral comparison with bacteriorhodopsin. Kandori H; Shimono K; Sudo Y; Iwamoto M; Shichida Y; Kamo N Biochemistry; 2001 Aug; 40(31):9238-46. PubMed ID: 11478891 [TBL] [Abstract][Full Text] [Related]
22. Origin of a Double-Band Feature in the Ethylenic C═C Stretching Modes of the Retinal Chromophore in Heliorhodopsins. Urui T; Das I; Mizuno M; Sheves M; Mizutani Y J Phys Chem B; 2022 Nov; 126(43):8680-8688. PubMed ID: 36281583 [TBL] [Abstract][Full Text] [Related]
23. Cis-Trans Reisomerization Precedes Reprotonation of the Retinal Chromophore in the Photocycle of Schizorhodopsin 4. Hayashi K; Mizuno M; Kandori H; Mizutani Y Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202203149. PubMed ID: 35749139 [TBL] [Abstract][Full Text] [Related]
24. Chromophore Distortions in Photointermediates of Proteorhodopsin Visualized by Dynamic Nuclear Polarization-Enhanced Solid-State NMR. Mehler M; Eckert CE; Leeder AJ; Kaur J; Fischer T; Kubatova N; Brown LJ; Brown RCD; Becker-Baldus J; Wachtveitl J; Glaubitz C J Am Chem Soc; 2017 Nov; 139(45):16143-16153. PubMed ID: 29027800 [TBL] [Abstract][Full Text] [Related]
25. The crystal structures of a chloride-pumping microbial rhodopsin and its proton-pumping mutant illuminate proton transfer determinants. Besaw JE; Ou WL; Morizumi T; Eger BT; Sanchez Vasquez JD; Chu JHY; Harris A; Brown LS; Miller RJD; Ernst OP J Biol Chem; 2020 Oct; 295(44):14793-14804. PubMed ID: 32703899 [TBL] [Abstract][Full Text] [Related]
27. The chirality origin of retinal-carotenoid complex in gloeobacter rhodopsin: a temperature-dependent excitonic coupling. Jana S; Jung KH; Sheves M Sci Rep; 2020 Aug; 10(1):13992. PubMed ID: 32814821 [TBL] [Abstract][Full Text] [Related]
28. Inverse Hydrogen-Bonding Change Between the Protonated Retinal Schiff Base and Water Molecules upon Photoisomerization in Heliorhodopsin 48C12. Tomida S; Kitagawa S; Kandori H; Furutani Y J Phys Chem B; 2021 Aug; 125(30):8331-8341. PubMed ID: 34292728 [TBL] [Abstract][Full Text] [Related]
29. FTIR spectroscopy of the all-trans form of Anabaena sensory rhodopsin at 77 K: hydrogen bond of a water between the Schiff base and Asp75. Furutani Y; Kawanabe A; Jung KH; Kandori H Biochemistry; 2005 Sep; 44(37):12287-96. PubMed ID: 16156642 [TBL] [Abstract][Full Text] [Related]
30. Fluorescence and excited state dynamics of the deprotonated Schiff base retinal in proteorhodopsin. Bühl E; Braun M; Lakatos A; Glaubitz C; Wachtveitl J Biol Chem; 2015 Sep; 396(9-10):1109-15. PubMed ID: 26083266 [TBL] [Abstract][Full Text] [Related]
31. Microsolvation Effects in the Spectral Tuning of Heliorhodopsin. Wijesiri K; Gascón JA J Phys Chem B; 2022 Aug; 126(31):5803-5809. PubMed ID: 35894868 [TBL] [Abstract][Full Text] [Related]
32. Reisomerization of retinal represents a molecular switch mediating Na Fujisawa T; Kinoue K; Seike R; Kikukawa T; Unno M J Biol Chem; 2022 Sep; 298(9):102366. PubMed ID: 35963435 [TBL] [Abstract][Full Text] [Related]
33. Concerted Motions and Molecular Function: What Physical Chemistry We Can Learn from Light-Driven Ion-Pumping Rhodopsins. Mizutani Y J Phys Chem B; 2021 Nov; 125(43):11812-11819. PubMed ID: 34672596 [TBL] [Abstract][Full Text] [Related]
34. Characterisation of Schiff base and chromophore in green proteorhodopsin by solid-state NMR. Pfleger N; Lorch M; Woerner AC; Shastri S; Glaubitz C J Biomol NMR; 2008 Jan; 40(1):15-21. PubMed ID: 17968661 [TBL] [Abstract][Full Text] [Related]
35. Difference FTIR Spectroscopy of Jumping Spider Rhodopsin-1 at 77 K. Hanai S; Nagata T; Katayama K; Inukai S; Koyanagi M; Inoue K; Terakita A; Kandori H Biochemistry; 2023 Apr; 62(8):1347-1359. PubMed ID: 37001008 [TBL] [Abstract][Full Text] [Related]
37. Structural changes in the Schiff base region of squid rhodopsin upon photoisomerization studied by low-temperature FTIR spectroscopy. Ota T; Furutani Y; Terakita A; Shichida Y; Kandori H Biochemistry; 2006 Mar; 45(9):2845-51. PubMed ID: 16503639 [TBL] [Abstract][Full Text] [Related]
38. Strongly hydrogen-bonded water molecules in the Schiff base region of rhodopsins. Furutani Y; Shibata M; Kandori H Photochem Photobiol Sci; 2005 Sep; 4(9):661-6. PubMed ID: 16121274 [TBL] [Abstract][Full Text] [Related]
39. Ion-pumping microbial rhodopsin protein classification by machine learning approach. Selvaraj MK; Thakur A; Kumar M; Pinnaka AK; Suri CR; Siddhardha B; Elumalai SP BMC Bioinformatics; 2023 Jan; 24(1):29. PubMed ID: 36707759 [TBL] [Abstract][Full Text] [Related]
40. Photochemistry of the Retinal Chromophore in Microbial Rhodopsins. Inoue K J Phys Chem B; 2023 Nov; 127(43):9215-9222. PubMed ID: 37853716 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]