These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 39091195)
1. Cytotoxic evaluation of pure and doped iron oxide nanoparticles on cancer cells: a magnetic fluid hyperthermia perspective. Bhadla D; Parekh K; Jain N Nanotoxicology; 2024 Aug; 18(5):464-478. PubMed ID: 39091195 [TBL] [Abstract][Full Text] [Related]
2. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells. Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952 [TBL] [Abstract][Full Text] [Related]
3. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. Fantechi E; Innocenti C; Zanardelli M; Fittipaldi M; Falvo E; Carbo M; Shullani V; Di Cesare Mannelli L; Ghelardini C; Ferretti AM; Ponti A; Sangregorio C; Ceci P ACS Nano; 2014 May; 8(5):4705-19. PubMed ID: 24689973 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and characterization of modified magnetic nanoparticles as theranostic agents: in vitro safety assessment in healthy cells. Prokopiou E D; Pissas M; Fibbi G; Margheri F; Kalska-Szostko B; Papanastasiou G; Jansen M; Wang J; Laurenzana A; Efthimiadou K E Toxicol In Vitro; 2021 Apr; 72():105094. PubMed ID: 33460736 [TBL] [Abstract][Full Text] [Related]
5. Surface modified iron-oxide based engineered nanomaterials for hyperthermia therapy of cancer cells. Mehak ; Thummer RP; Pandey LM Biotechnol Genet Eng Rev; 2023 Oct; 39(2):1187-1233. PubMed ID: 36710396 [TBL] [Abstract][Full Text] [Related]
6. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment. Zhao L; Huo M; Liu J; Yao Z; Li D; Zhao Z; Tang J J Nanosci Nanotechnol; 2013 Feb; 13(2):741-5. PubMed ID: 23646507 [TBL] [Abstract][Full Text] [Related]
7. Determining iron oxide nanoparticle heating efficiency and elucidating local nanoparticle temperature for application in agarose gel-based tumor model. Shah RR; Dombrowsky AR; Paulson AL; Johnson MP; Nikles DE; Brazel CS Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():18-29. PubMed ID: 27523991 [TBL] [Abstract][Full Text] [Related]
8. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. Khandhar AP; Ferguson RM; Simon JA; Krishnan KM J Biomed Mater Res A; 2012 Mar; 100(3):728-37. PubMed ID: 22213652 [TBL] [Abstract][Full Text] [Related]
9. Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model. Johannsen M; Thiesen B; Jordan A; Taymoorian K; Gneveckow U; Waldöfner N; Scholz R; Koch M; Lein M; Jung K; Loening SA Prostate; 2005 Aug; 64(3):283-92. PubMed ID: 15726645 [TBL] [Abstract][Full Text] [Related]
10. Comparative studies on the cytotoxic effects induced by iron oxide nanoparticles in cancerous and noncancerous human lung cells subjected to an alternating magnetic field. Ruzycka-Ayoush M; Sobczak K; Grudzinski IP Toxicol In Vitro; 2024 Mar; 95():105760. PubMed ID: 38070718 [TBL] [Abstract][Full Text] [Related]
11. In vitro Ultrasonic Potentiation of 2-Phenylethynesulfonamide/Magnetic Fluid Hyperthermia Combination Treatments for Ovarian Cancer. Mérida F; Rinaldi C; Juan EJ; Torres-Lugo M Int J Nanomedicine; 2020; 15():419-432. PubMed ID: 32021188 [TBL] [Abstract][Full Text] [Related]
12. Magnetic Fluid Hyperthermia as Treatment Option for Pancreatic Cancer Cells and Pancreatic Cancer Organoids. Palzer J; Mues B; Goerg R; Aberle M; Rensen SS; Olde Damink SWM; Vaes RDW; Cramer T; Schmitz-Rode T; Neumann UP; Slabu I; Roeth AA Int J Nanomedicine; 2021; 16():2965-2981. PubMed ID: 33935496 [TBL] [Abstract][Full Text] [Related]
13. In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Bhardwaj A; Parekh K; Jain N Sci Rep; 2020 Sep; 10(1):15249. PubMed ID: 32943662 [TBL] [Abstract][Full Text] [Related]
14. Using magnetic particle imaging systems to localize and guide magnetic hyperthermia treatment: tracers, hardware, and future medical applications. Chandrasekharan P; Tay ZW; Hensley D; Zhou XY; Fung BK; Colson C; Lu Y; Fellows BD; Huynh Q; Saayujya C; Yu E; Orendorff R; Zheng B; Goodwill P; Rinaldi C; Conolly S Theranostics; 2020; 10(7):2965-2981. PubMed ID: 32194849 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687 [No Abstract] [Full Text] [Related]
16. Hyperthermia generated by magnetic nanoparticles for effective treatment of disseminated peritoneal cancer in an orthotopic nude-mouse model. Matsumi Y; Kagawa T; Yano S; Tazawa H; Shigeyasu K; Takeda S; Ohara T; Aono H; Hoffman RM; Fujiwara T; Kishimoto H Cell Cycle; 2021 Jun; 20(12):1122-1133. PubMed ID: 34110969 [TBL] [Abstract][Full Text] [Related]
17. Application of magnetic field hyperthermia and superparamagnetic iron oxide nanoparticles to HIV-1-specific T-cell cytotoxicity. Williams JP; Southern P; Lissina A; Christian HC; Sewell AK; Phillips R; Pankhurst Q; Frater J Int J Nanomedicine; 2013; 8():2543-54. PubMed ID: 23901272 [TBL] [Abstract][Full Text] [Related]
18. Extracellular and intracellular intermittent magnetic-fluid hyperthermia treatment of SK-Hep1 hepatocellular carcinoma cells based on magnetic nanoparticles coated with polystyrene sulfonic acid. Chen BW; Chiu GW; He YC; Huang CY; Huang HT; Sung SY; Hsieh CL; Chang WC; Hsu MS; Wei ZH; Yao DJ PLoS One; 2021; 16(2):e0245286. PubMed ID: 33544751 [TBL] [Abstract][Full Text] [Related]
19. Fe Lu Q; Dai X; Zhang P; Tan X; Zhong Y; Yao C; Song M; Song G; Zhang Z; Peng G; Guo Z; Ge Y; Zhang K; Li Y Int J Nanomedicine; 2018; 13():2491-2505. PubMed ID: 29719396 [TBL] [Abstract][Full Text] [Related]
20. Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Shi D; Sadat ME; Dunn AW; Mast DB Nanoscale; 2015 May; 7(18):8209-32. PubMed ID: 25899408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]